
Institut für Informatik

Lehr- und Forschungseinheit für Programmierung und Softwaretechnik

Oettingenstraße 67 D-80538 München

Masterarbeit im Elitestudiengang Software Engineering

Formal Specification and Analysis of

Cloud Computing Management

Tobias Johann Mühlbauer

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
24 JAN 2012 2. REPORT TYPE

3. DATES COVERED
 00-00-2012 to 00-00-2012

4. TITLE AND SUBTITLE
Formal Specification And Analysis Of Cloud Computing Management

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Institute for Computer Science ,Teaching and research unit for
programming and software engineering ,Oettingenstr. 67. D-80538
Munich, Germany, ,

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Cloud Computing-based systems (i) are safety- and security-critical systems which have strong qualitative
and quantitative formal requirements, (ii) have equally important timecritical performance-based quality
of service properties (e.g., availability), and (iii) need to dynamically adapt to changes in the potentially
hostile (e.g., distributed denial of service attacks) and often probabilistic environment they operate in.
These aspects make distributed and Cloud-based systems complex and hard to design, build, test, and
verify; and in this context, Cloud Computing management has to deal with a multitude of obstacles for the
growth and adoption of the Cloud Computing paradigm. In this thesis, we focus on three of these obstacles:
bugs in large distributed systems, service availability, and performance unpredictability. To tackle these
challenges and the aforementioned complexity, we propose solutions based on executable formal
specifications and formal analysis, using an adequate semantic framework. We chose rewriting logic as the
semantic framework and Maude, a language and system based on rewriting logic that offers the possibility
of executing and formally analyzing specifications, as the foundation for our work. The main contributions
of this thesis are ? The specification of formal languages for the design and analysis of Cloud-based
architectures. In particular, the rewriting logic-based specification of formal languages based on the
coordination language and mobile calculus KLAIM. ? The specification of a modularized actor model of
computation which incorporates the Russian Dolls model and fulfills the requirements for statistical model
checking; thus allowing the specification of hierarchically structured distributed systems and their
quantitative and qualitative formal analysis. ? The formal specification and formal analysis of the denial of
service (DoS) defense mechanism ASV+SR, which is a combination of the DoS defense mechanism ASV
and the Cloud-based resource provisioning mechanism SR. We show that ASV+SR provides stable
availability at a reasonable cost; where stable availability means that with very high probability service
quality remains very close to a threshold, regardless of how bad the DoS attack can get. ? The formal
specification of a Publish/Subscribe system that is used to (a) answer the question of how a
Publish/Subscribe architecture can be enriched with Cloud-based dynamic resource provisioning
mechanisms to better meet quality of service (QoS) requirements and (b) show that predictions about QoS
properties can be made using statistical analysis.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

236

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Institut für Informatik

Lehr- und Forschungseinheit für Programmierung und Softwaretechnik

Oettingenstraße 67 D-80538 München

Masterarbeit im Elitestudiengang Software Engineering

Formal Specification and Analysis of

Cloud Computing Management

Tobias Johann Mühlbauer

Matrikelnummer: 1110475

Erstgutachter: Prof. Dr. Martin Wirsing

Zweitgutachter: Prof. Dr. Alexander Knapp

Betreuer: Prof. Dr. José Meseguer

Abgabe: 24. Januar 2012

Hiermit versichere ich, dass ich diese Masterarbeit selbständig verfasst habe. Ich habe dazu
keine anderen als die angegebenen Quellen und Hilfsmittel verwendet.

Tobias Johann Mühlbauer Augsburg, den 24. Januar 2012

Acknowledgements

This thesis would not have been possible without helpful guidance and advice. I want to
express my gratitude to everyone involved. My special thanks go to

Prof. Dr. José Meseguer,
for all his contributions of time, ideas, and guidance without which this thesis would
not have been possible. I want to thank Prof. Meseguer for offering me the opportunity
to work on this thesis at the University of Illinois at Urbana-Champaign and for the
productive, inspiring, and fun time we spent in the “Moraira research institute”. It has
been my great honor to be your student.

Prof. Dr. Martin Wirsing,
for offering me this great thesis opportunity and for all his guidance and support
throughout. His academic experience was invaluable during the work on this thesis.

Prof. Dr. Alexander Knapp,
for being a great teacher. Without the knowledge gained through his lectures I would
have lacked the fundamentals to work on this thesis.

Prof. Dr. Santiago Escobar,
for all the inspiring conversations and fun I enjoyed with him, especially during coffee
breaks.

Prof. Musab Al-Turki, Ph.D.,
for all the great help he provided with the ASV protocol, statistical model checking,
and the Maude system in general.

Kyungmin Bae, Prof. Dr. Francisco Durán, Michael Katelman, Ph.D.,
Camilo Rocha, Dr. Raúl Gutiérrez, and Ralf Sasse,

my colleagues and friends, not only for being supportive during the work on this thesis
but also for the fun times we spent together.

Prof. Klara Nahrstedt, Ph.D., and Guijun Wang, Ph.D.,
for all the advice they provided to the work on the formal specification and analysis
of Publish/Subscribe systems.

Denise and Ron Mazza,
for giving me the possibility to stay in beautiful Cardiff-by-the-Sea where parts of this
thesis originated.

vii

Acknowledgements

Anita, Johann, and Verena Mühlbauer,
my parents and my sister, for all their love and encouragement, and their support in
all my pursuits. Thank you.

Lastly, my very special thanks go to Jonas Eckhardt, who has been a great colleague and
friend over the past several months. The work in this thesis originated in collaboration with
him and would not have been possible without his contributions of ideas and inspiration.
Thank you for our sincere friendship and the fun time we spent together in the United
States, in Spain, and throughout our studies in Germany.

This work was funded in part by NSF Grant CCF 09-05584, AFOSR Grant FA8750-
11-2-0084, the EU-funded projects FP7-257414 ASCENS and FP7-256980 NESSoS, the
PROSALMU scholarship for research stays abroad, and the Software Engineering Elite Grad-
uate Program.

viii

Abstract

Cloud Computing-based systems (i) are safety- and security-critical systems which have
strong qualitative and quantitative formal requirements, (ii) have equally important time-
critical performance-based quality of service properties (e.g., availability), and (iii) need to
dynamically adapt to changes in the potentially hostile (e.g., distributed denial of service at-
tacks) and often probabilistic environment they operate in. These aspects make distributed
and Cloud-based systems complex and hard to design, build, test, and verify; and in this
context, Cloud Computing management has to deal with a multitude of obstacles for the
growth and adoption of the Cloud Computing paradigm. In this thesis, we focus on three
of these obstacles: bugs in large distributed systems, service availability, and performance
unpredictability. To tackle these challenges and the aforementioned complexity, we propose
solutions based on executable formal specifications and formal analysis, using an adequate
semantic framework. We chose rewriting logic as the semantic framework and Maude, a
language and system based on rewriting logic that offers the possibility of executing and
formally analyzing specifications, as the foundation for our work.

The main contributions of this thesis are:

• The specification of formal languages for the design and analysis of Cloud-based ar-
chitectures. In particular, the rewriting logic-based specification of formal languages
based on the coordination language and mobile calculus KLAIM.

• The specification of a modularized actor model of computation which incorporates the
Russian Dolls model and fulfills the requirements for statistical model checking; thus
allowing the specification of hierarchically structured distributed systems and their
quantitative and qualitative formal analysis.

• The formal specification and formal analysis of the denial of service (DoS) defense
mechanism ASV+SR, which is a combination of the DoS defense mechanism ASV
and the Cloud-based resource provisioning mechanism SR. We show that ASV+SR
provides stable availability at a reasonable cost; where stable availability means that
with very high probability service quality remains very close to a threshold, regardless
of how bad the DoS attack can get.

• The formal specification of a Publish/Subscribe system that is used to (a) answer the
question of how a Publish/Subscribe architecture can be enriched with Cloud-based
dynamic resource provisioning mechanisms to better meet quality of service (QoS)
requirements and (b) show that predictions about QoS properties can be made using
statistical analysis.

ix

Contents

Acknowledgements vii

Abstract ix

Contents xiv

1. Introduction 1
1.1. Motivation . 1
1.2. Challenges of Cloud Computing Management 2
1.3. Main contributions . 3
1.4. Outline of this thesis . 4

2. Cloud Computing in a Nutshell 5

2.1. What is Cloud Computing? . 5
2.2. Technical definition . 7
2.3. Comparison to other utility computing paradigms 9

3. Preliminaries: Rewriting Logic and the Maude System 11
3.1. A brief introduction to Rewriting Logic . 11
3.2. The Maude system . 12

3.2.1. Specification of real-time and probabilistic systems 13
3.2.2. Specification of object-oriented systems 13
3.2.3. Parameterized modules . 14
3.2.4. Formal meta-object patterns . 14

4. Formal Languages for the Design and Analysis of Cloud-based
Architectures 15
4.1. Introduction to Coordination Languages . 16

4.1.1. Linda . 16
4.1.2. Advantages of Coordination Languages 18

4.2. KLAIM . 18
4.2.1. Overview of KLAIM . 18

4.3. M-KLAIM — a Maude-based specification of KLAIM 24
4.3.1. Overview . 25
4.3.2. Description of modules . 26

xi

Contents

4.4. Application of the CINNI calculus . 40
4.4.1. Implementation of CINNIKLAIM . 42

4.5. OO-KLAIM — an extension of M-KLAIM for object-oriented specifications 47
4.5.1. Object-based programming in Maude 48
4.5.2. OO-KLAIM syntax . 48
4.5.3. OO-KLAIM semantics . 49

4.6. D-KLAIM — an extension of OO-KLAIM for distributed specifications . . 51
4.6.1. Rewriting with external objects in Maude 52
4.6.2. D-KLAIM specification overview . 52
4.6.3. D-KLAIM modules . 52
4.6.4. The socket interface . 58
4.6.5. Example of a Cloud-based architecture specification based on

D-KLAIM . 64
4.7. Maude-based formal analysis of *-KLAIM 66

4.7.1. Maude LTL model checking . 66
4.7.2. A *-KLAIM-based token-based mutual exclusion algorithm 66
4.7.3. Model checking using the Maude search command 70
4.7.4. A D-KLAIM-based load balancer . 71

4.8. Related Work . 73
4.9. Conclusion . 74

5. A Modularized Actor Model for Statistical Model Checking 75

5.1. Introduction to the Actor Model of Computation 76
5.1.1. A Maude-based Specification of the Actor Model 78

5.2. Introduction to Statistical Model Checking 80
5.2.1. Probabilistic Rewrite Theories . 80
5.2.2. Maude specification of Actor PMaude 82
5.2.3. Statistical Analysis using the PVeStA model checker 86

5.3. Introduction to the Reflective Russian Dolls Model 88
5.4. The Modularized Actor Model . 90

5.4.1. The Hierarchical Addressing Scheme 90
5.4.2. The Actor Model and the Name Generator 91

5.5. Multi-level scheduling for the Modularized Actor Model 94
5.5.1. The Absence of unquantified non-determinism 99

5.6. Using PVeStA to Statistically Analyze Specifications based on the
Modularized Actor Model . 100
5.6.1. The module APMAUDE . 100
5.6.2. Running PVeStA . 100

6. Guaranteeing Stable Availability under Distributed Denial of Service
Attacks 103

6.1. Introduction to Denial of Service Attacks 103
6.2. The ASV Protocol . 105
6.3. Maude-based Analysis of the ASV Protocol 106

6.3.1. Description of the ASV specification in Maude 107
6.3.2. Statistical Model Checking Results 118

xii

Contents

6.4. ASV+SR — a 2-Dimensional Protection Mechanism against DDoS Attacks 119
6.4.1. The Server Replicator meta-object and the ASV+SR protocol 120
6.4.2. Description of the ASV+SR specification in Maude 122
6.4.3. Statistical Model Checking Results 127

6.5. Related Work . 130
6.6. Conclusion . 131

7. QoS Analysis of Cloud-based Publish/Subscribe Systems 133

7.1. Introduction to Publish/Subscribe Systems 134
7.1.1. Three-dimensional decoupling . 135
7.1.2. Types of event filtering . 135
7.1.3. Broker-based publish/subscribe middleware solutions 136
7.1.4. QoS requirements and resource planning 136

7.2. A Stock Exchange Information System . 137
7.2.1. Events . 137
7.2.2. Network . 138
7.2.3. Behavior of subscribers, publishers, and brokers 140

7.3. Specification of the Stock Exchange Information System in Maude 145
7.3.1. Overview of the Maude specification 145
7.3.2. Description of the modules . 147

7.4. Statistical Analysis of the Stock Exchange Information System 161
7.5. Adding Cloud-based Broker Replication . 162

7.5.1. Broker Data — a data storage and access interface for Cloud-based
systems . 163

7.5.2. Broker replication in the Cloud . 164
7.6. Specification of the Cloud-based Stock Exchange Information System in

Maude . 166
7.6.1. Overview of the Maude specification 166
7.6.2. Description of the modules of the Maude specification 166

7.7. Statistical Analysis of the Cloud-based Stock Exchange Information System 173
7.8. Conclusion & Future Work . 175

8. Outlook and Conclusion 177

Appendix 178

A. Formal Languages for the Design and Analysis of Cloud-based
Architectures 181

B. Automatic Generation of CINNI Instances for the Maude System 185

B.1. Introduction . 185
B.2. CINNI . 186
B.3. Running Example: CINNIπ . 187
B.4. The Transformation . 189

B.4.1. Creation of CINNI operators . 191
B.4.2. Creation of CINNI equations . 191

xiii

Contents

B.5. The createCINNI Tool . 195

C. A Modularized Actor Model for Statistical Model Checking 197
C.1. The SAMPLER module . 197

D. Guaranteeing Stable Availability under Distributed Denial of Service
Attacks 201
D.1. Maude Specification of a Generic Actor Generator 201

E. QoS Analysis of a Cloud-based Publish/Subscribe Middleware 203
E.1. Predicate filter generator for the stock exchange information system model 203

E.1.1. The module MODEL-PARAMS . 205
E.2. Initial configuration of the stock exchange information system model 205
E.3. Initial configuration of the Cloud-based stock exchange information system

model . 208

Bibliography 213

xiv

1 C
h

ap
te

r

Introduction

Cloud-based systems are complex and hard to design, build, test, and verify; and in this
context, Cloud Computing management has to deal with a multitude of obstacles for the
growth and adoption of the Cloud Computing paradigm. It is our goal to provide solutions
for the challenges of Cloud Computing management using formal specifications and formal
analysis. This chapter outlines the challenges of Cloud Computing management, states the
main contributions of this work, and, finally, gives an outline of the thesis.

1.1. Motivation

On June 20, 2011, the Cloud-based file storage service Dropbox reported that

“Yesterday we made a code update at 1:54pm Pacific time that introduced a bug affecting
our authentication mechanism. We discovered this at 5:41pm and a fix was live at
5:46pm.”

— Arash Ferdowsi, Dropbox [18]

During these nearly four hours, the broken authentication mechanism granted access to
possibly private data stored on some accounts using any chosen password.

In late 2010, a denial of service (DoS) attack targeted websites of financial institutions such
as MasterCard.com and PayPal.com. On December 8, 2010 at 07:53 AM EDT, MasterCard
issued a statement that

“MasterCard is experiencing heavy traffic on its external corporate website — Master-
Card.com. We are working to restore normal speed of service. There is no impact
whatsoever on our cardholders ability to use their cards for secure transactions.”

— Mastercard press release [72]

1

1. Introduction

In fact, by that time, the DoS attack brought the website down and made the web presence
unavailable for most costumers. At 02:53 PM on December 8, 2010, MasterCard issued a
second statement in which they reported that

“MasterCard has made significant progress in restoring full-service to its corporate web-
site. Our core processing capabilities have not been compromised and cardholder account
data has not been placed at risk. While we have seen limited interruption in some
web-based services, cardholders can continue to use their cards for secure transactions
globally.”

— Mastercard press release [73]

The attack and the resulting downtime lasted for several hours.
The Dropbox and MasterCard incidents are just two out of many recent of Cloud-based

system incidents; incidents that Cloud Computing management has to deal with. In fact,
Cloud Computing-based systems (i) are safety- and security-critical systems which have
strong qualitative and quantitative formal requirements, (ii) have equally important time-
critical performance-based quality of service properties (e.g., availability), and (iii) need to
dynamically adapt to changes in the potentially hostile (e.g., distributed denial of service at-
tacks) and often probabilistic environment they operate in. These aspects make distributed
and Cloud-based systems complex and hard to design, build, test, and verify. To tackle these
challenges, the solutions in this thesis are based on executable formal specifications and for-
mal analysis, using an adequate semantic framework. We chose rewriting logic [75] as the
semantic framework and Maude [35], a language and system based on rewriting logic that
offers the possibility of executing and formally analyzing specifications, as the foundation
for the work in this thesis.

1.2. Challenges of Cloud Computing Management

To better understand what Cloud Computing Management means, we first need to define
the meaning of management. One of the first comprehensive statements of a theory of
management was given by Henri Fayol. In his work “Administration industrielle et générale”
[46] he states that the five primary functions of management are:

1. to forecast and plan,

2. to organize,

3. to command,

4. to coordinate, and

5. to control.

While the term management is generally understood to be centered around people, in this
work we also consider automatic management performed by machines which includes the
broad category of systems with self-* properties such as, e.g., self-healing, self-scaling, and
self-organiztion. Bringing the definitions of Cloud Computing and management together,
Cloud Computing management means the application of the aforementioned management

2

1.3. Main contributions

Obstacle Opportunity

1 Availability of Service Use Multiple Cloud Providers; Use Elasticity to Prevent DDOS
2 Data Lock-In Standardize APIs; Compatible SW to enable Surge Computing
3 Data Confidentiality and

Auditability
Deploy Encryption, VLANs, Firewalls; Geographical Data
Storage

4 Data Transfer
Bottlenecks

FedExing Disks; Data Backup/Archival; Higher BW Switches

5 Performance
Unpredictability

Improved VM Support; Flash Memory; Gang Schedule VMs

6 Scalable Storage Invent Scalable Store
7 Bugs in Large

Distributed Systems
Invent Debugger that relies on Distributed VMs

8 Scaling Quickly Invent Auto-Scaler that relies on ML; Snapshots for
Conservation

9 Reputation Fate Sharing Offer reputation-guarding services like those for email
10 Software Licensing Pay-for-use licenses; Bulk use sales

Figure 1.1.: The top 10 obstacles for the growth and adoption of Cloud Computing according to
the Berkeley view on Cloud Computing [19]

functions on the different layers of Cloud Computing: the infrastructure, the platform, and
the service layer.

Table 1.1 outlines the top 10 obstacles for the growth and adoption of Cloud Computing
[19]. Although all of the mentioned obstacles are in some way related to management-related
tasks, in this thesis we focus on three of these obstacles: bugs in large distributed systems,
service availability, and performance unpredictability.

1.3. Main contributions

In this thesis, we contribute solutions for the following Cloud Computing management-
related obstacles:

Bugs in large distributed systems. As mentioned before, distributed and Cloud-based sys-
tems are complex and hard to design, build, test, and verify. This may result in bugs
that are hard to think about and thus prevent during system development and are
equally hard to find and fix in a running system. We propose a solution based on
formal specification and formal analysis that can identify flaws during early stages of
development. In particular, we contribute a formal executable specification and ex-
tensions of the coordination language and mobile calculus KLAIM [38]; and further
show that these KLAIM-based executable formal languages can be used to formally
specify and qualitatively formally analyze models of distributed and Cloud-based sys-
tems. Our second main contribution in this area is a Maude-based specification of a
modularized actor model of computation which incorporates the Russian Dolls model
and fulfills the requirements for statistical model checking. The rewriting-logic based
Russian Dolls model [78] combines logical reflection and hierarchical structuring which
allows the simple expression of more complex distributed systems. Statistical model
checking allows the formal analysis of quantitative and qualitative properties; and can,

3

1. Introduction

up to a certain level of statistical confidence, check larger system models than original
model checking techniques.

Service availability. Service availability is crucial for many businesses and end-users to be
able to migrate from locally run software to software services in the Cloud. Availability
of Internet-based services can be compromised by distributed denial of service (DoS)
attacks. DoS defense mechanisms help maintaining availability. However, even when
equipped with defense mechanisms, systems will typically show performance degra-
dation. Therefore, one goal is to achieve stable availability, which means that with
very high probability service quality remains very close to a threshold, regardless of
how bad the DoS attack can get. Another goal is to achieve stable availability at
an economically reasonable cost. We contribute the formal specification and formal
analysis of the DoS defense mechanism ASV+SR which provides stable availability at
a reasonable cost. ASV+SR is a combination of the defense mechanism ASV and the
Cloud-based resource provisioning mechanism SR.

Performance unpredictability. Cloud Computing management needs to be able to predict,
forecast, and adapt the performance of their system. In particular, we consider Pub-
lish/Subscribe architectures. However, several parameters of the system and the un-
reliability of best-effort networks, especially when deployed in a worldwide setting,
make it difficult to analyze such services. One further source of uncertainty, and
challenge in order to ensure quality of service (QoS) system requirements, is the vari-
ability in the number of users of the service. An interesting research question is how
to enrich a Publish/Subscribe architecture with Cloud-based dynamic resource provi-
sioning mechanisms to better meet QoS requirements. In this thesis, we contribute a
formal specification of a Publish/Subscribe system and show that predictions about
QoS properties of the specified systems can be made using statistical analysis.

1.4. Outline of this thesis

This thesis is structured as follows: Chapters 2 and 3 respectively introduce the concept
of Cloud Computing and the prerequisites on rewriting logic and the Maude system. In
Chapter 4 we present formal languages for the design and analysis of Cloud Computing
systems; in particular, the formal specification of formal languages based on the coordination
language and mobile calculus KLAIM. Chapter 5 introduces a modularized actor model of
computation which allows the specification of hierarchical models of distributed systems that
can be statistically model checked. In Chapter 6 we formally specify and analyze ASV+SR,
a Cloud-based strategy to prevent a common threat in distributed computing: distributed
denial of service attacks. Chapter 7 addresses the problem of performance unpredictability
in Cloud-based systems; in particular, we show how a formal specification and analysis of
a Cloud-based Publish/Subscribe infrastructure can help predict service quality and how
reliability and availability can be improved using dynamic scaling of resources. Finally,
Chapter 8 summarizes this thesis and gives an outlook on future work.

Chapters 4, 5, and 6 originated in collaboration with Jonas Eckhardt who published these
chapters in his thesis “A Formal Analysis of Security Properties in Cloud Computing” [43].

4

2 C
h

ap
te

r

Cloud Computing in a Nutshell

We begin this introduction to Cloud Computing with a famous quote by Larry Ellison:

“The interesting thing about cloud computing is that we’ve redefined cloud computing
to include everything that we already do. I can’t think of anything that isn’t cloud
computing with all of these announcements. The computer industry is the only industry
that is more fashion-driven than women’s fashion. Maybe I’m an idiot, but I have no
idea what anyone is talking about. What is it? It’s complete gibberish. It’s insane.
When is this idiocy going to stop? We’ll make cloud computing announcements. I’m
not going to fight this thing. But I don’t understand what we would do differently in
the light of cloud other than change the wording of some of our ads.”

— Larry Ellison, Oracle CEO [106]

In view of this statement, we summarize the essential aspects of Cloud Computing, give
a technical definition of the term, and compare it to other utility computing paradigms.

2.1. What is Cloud Computing?

Cloud Computing can be described as “the long-held dream of computing as a utility” [19].
This dream of providing and consuming computing as a service is not new and has already
been predicted by Turing award winner John McCarthy in the early 1960s [49]: “Computation
may someday be organized as a public utility just as the telephone system is a public utility”.
Within this context, Cloud Computing is only one paradigm among many that follows the
idea of utility computing. Other popular examples are Grid Computing and Peer-to-Peer
Computing; and all of these examples have gained increasing popularity over the past decade.
For Timothy Chou, a driver for this success is a shift in software business models. In his
book “Introduction to Cloud Computing” [34], he presents the seven fundamental software
business models (Figure 2.1):

5

2. Cloud Computing in a Nutshell

1 2 3 4 5 6 7
Traditional Open Source Outsourcing Hybrid Hybrid+ SaaS Web

S
o
ft
w

a
r
e

$4,000/user
(one time)

$0
$4,000/user
(one time)

$4,000/user
(one time)

$
3
0
0
/
u
se

r/
m

o
n
th

<
$
1
0
0
/
u
se

r/
m

o
n
th

A
d
s,

T
ra

n
sa

ct
io

n
s,

E
m

b
ed

d
ed

(<
$
1
0
/
u
se

r/
m

o
n
th

)

S
u
p
p
o
r
t

$800/user/
year

$1,600/user
(one time)

$800/user/
year

$800/user/
year

S
e
r
v
ic

e Bid
<$1,300/

user/month

$150/user/
month

@H @C @H @C @H @C

Figure 2.1.: The seven software business models according to Timothy Chou (prices are descriptive
examples) [34]

Model 1: Traditional. In the traditional software business model, software is permanently
licensed to a customer for a one-time fee. In order to receive update and upgrade rights
as well as technical support, customers are repeatedly charged a certain percentage of
the one-time fee. In addition to the one-time and support fees customers are faced
with management costs which can be, according the Gartner Group, as high as four
times the one-time fee per user per year.

Model 2: Open Source. In the Open Source software business model, software is usually
distributed free of charge. Customers pay for support and software management.

Model 3: Outsourcing. In the Outsourcing software business model, customers buy soft-
ware licenses and sign support contracts just as in the traditional model. However,
software management is outsourced to a third party. The physical hardware can
thereby be located in a data center owned by the third party (@H) or in a data center
that the customer owns (@C).

Model 4: Hybrid. The Hybrid software business model differs from model 3 in that no third
party is involved and that the software company itself services their software. Service
costs are usually lower than in model 3 because the software company can cut costs
through specialization and standardization.

Model 5: Hybrid+. In the Hybrid+ software business model software, support, service,
and management are offered for an all-in-one per-user fee.

Model 6: SaaS. Chou argues that if software is engineered to be delivered as a service and
only as a service, operational costs are far lower than in model 4 and 5.

Model 7: Web. Software on the web is often not sold as in models 1–6. Companies that
follow this business model rather indirectly monetize their offerings. eBay for example
charges for transactions, Google on the other hand shows ads. These applications are

6

2.2. Technical definition

highly specialized and distribution costs on the Internet are marginal which allows
even cheaper operation.

In his summary of the seven software business models, Chou argues that “the days of
million-dollar software licenses are clearly over”. In the future, more and more companies
will move from Model 1 to business models that are more service and utility oriented. Even
Microsoft, a company which had great success with the traditional software business model,
is undergoing this transformation. In a talk on Cloud Computing in 2010, Steve Ballmer
said:

When you buy a new crate and you put it in a data center, is that cloud computing? I
can’t even tell you the private cloud versus the next generation of server and enterprise
computing. But, about 70 percent of our folks are doing things that are entirely cloud-
based, or cloud inspired. And by a year from now that will be 90 percent.

— Steve Ballmer, Microsoft CEO [80]

2.2. Technical definition

We have seen that, from a business perspective, Cloud Computing has gained quite some im-
portance. In the following, we define the term Cloud Computing from a more technical point
of view. The main actors in Cloud Computing are service users and infrastructure, platform,
and service providers. Service providers make services accessible to service users through
Internet-based interfaces. Thereby services are running on infrastructure provided by an
infrastructure provider. In some cases, service providers build their services on platforms
provided by platform providers who not only offer infrastructure but a software platform
with standardized APIs and tools as a service. Dependent on the type of resource that is
offered as a service, the term Cloud Computing covers the following “as a service” scenarios:

Infrastructure as a service (IaaS). In the Infrastructure as a service (IaaS) delivery model,
an infrastructure provider delivers virtualized computing resources, such as data stor-
age and computing power (CPU and memory). Customers of these resources deploy
software stacks that run their services on these resources. Amazon is an example of
an IaaS provider and offers their products S3 [16] and EBS [12] for storage and EC2
[14] for computing power.

Platform as a service (PaaS). Instead of providing infrastructure resources, in the plat-
form as a service (PaaS) delivery model, software platforms which introduce an addi-
tional level of abstraction are offered. Management tasks such as the scaling of physical
hardware resources for the platform are often transparent to customers and the ap-
plications they run on the platform. Additionally, service developers building for the
platform have access to platform-specific APIs offered by the PaaS provider. Exam-
ples for PaaS products include Google App Engine [53], force.com [95], and Microsoft
Windows Azure [82].

Software as a service (SaaS). As an alternative to locally installed applications, in the
software as a service (SaaS), applications are being made available as a service that runs
in the Cloud and can be accessed on the Internet. The infrastructure resources, the

7

2. Cloud Computing in a Nutshell

Hardware

Operating System

Virtualization

. . .

Hardware

Operating System

Virtualization

Infrastructure Layer

Platform Layer

Service Service Service
Platform
Interface

Infrastructure
Interface

Service Users Providers

Figure 2.2.: Overview of actors and layers in Cloud Computing

software platform, the service implementation, and the related software and hardware
management are invisible to the service user. Google web-based applications [56] are
an example of SaaS that is offered on Internet.

Besides these three commonly named scenarios, other Cloud Computing descriptions [87]
include a more data-driven context:

Database as a service (DaaS). Database as a service (DaaS) is a special form of Cloud-
based offering where storage with a defined set of operations that customers can per-
form (such as querying the data) is offered as a service. Examples for DaaS products
are Amazon SimpleDB [17] and RDS [15], Microsoft SQL Azure Database [79], and
Google Cloud SQL [54].

Figure 2.2 gives an overview of actors and layers found in Cloud Computing scenarios.
In [108], Vaquero et al. propose a definition of Cloud Computing that followed a study of

more than 20 other definitions and the extraction of a consensus:

“Clouds are a large pool of easily usable and accessible virtualized resources (such as
hardware, development platforms and/or services). These resources can be dynamically

8

2.3. Comparison to other utility computing paradigms

reconfigured to adjust to a variable load (scale), allowing also for an optimum resource
utilization. This pool of resources is typically exploited by a pay-per-use model in which
guarantees are offered by the Infrastructure Provider by means of customized SLAs.”

— Vaquero, Rodero-Merino, Caceres, and Lindner [108]

Furthermore, Vaquero et al. name the three concepts that most definitions include: scal-
ability, pay-per-use utility model, and virtualization. They also mention that there is no
minimum common denominator among the definitions.

2.3. Comparison to other utility computing paradigms

A legitimate question is in how far Cloud Computing differs from other utility computing
paradigms. Exemplarily, we compare Cloud Computing to Grid Computing, for which Ian
Foster proposed a definition in 2002:

“[The Grid is] a system that coordinates resources which are not subject to central-
ized control, using standard, open, general-purpose protocols and interfaces to deliver
nontrivial qualities of service.”

— Ian Foster [47]

In light of the two definitions which show many similarities in their definition of the goal
and approach, we highlight three key enabling concepts that might not be unique to Cloud
Computing but are fundamental concepts of the paradigm:

1. Virtualization enables elasticity and the illusion of infinite capacity [19]. Further-
more, it makes features such as on-demand sharing of resources and security by isola-
tion possible.

2. Multitenancy means that multiple costumers are consuming the same software ser-
vice. In Cloud Computing user-specific data is isolated and service-specific function-
ality is shared among users. This results in cheaper development and management
costs.

3. Service-level agreements (SLAs) are contracts between service users and providers.
Thereby providers commit themselves to a concrete level of quality of service. While,
for example, Grid Computing environments often only offer best-effort SLAs, Cloud
Computing providers often give guarantees for availability and uptime. This clear
assignment of responsibility is crucial for businesses who think about migrating to
outsourced computing services.

9

3 C
h

ap
te

r

Preliminaries: Rewriting Logic and the
Maude System

In order to formally specify and analyze Cloud Computing management, an appropriate
semantic framework is needed. We chose rewriting logic [75] as the semantic framework and
Maude [35], a language and system based on rewriting logic that offers the possibility of
executing and formally analyzing specifications, as the foundation for the work in this thesis.
In the following, we give brief introductions to rewriting logic and the Maude system.

3.1. A brief introduction to Rewriting Logic

Rewriting logic [75] is a simple, yet powerful, computational logic and is a general for-
malism that is a natural model of computation and an expressive semantic framework for
concurrency, parallelism, communication, interaction, and object-orientation. It is capable
of logical and distributed object reflection and, through its probabilistic and real-time ex-
tensions, it is capable of modeling real-time, stochastic, and hybrid systems. The article
“Twenty Years of Rewriting Logic" [77] gives a more in-depth introduction to the topic and
is a comprehensive survey of the work that has been done in that area.

In rewriting logic, concurrent and object-oriented systems are specified as rewrite theories,
that is, as triples (Σ, E ∪A,R), where

• Σ is a signature that defines the syntax and type structure of the system including
kinds, sorts, and operators,

• (Σ, E ∪ A) is an order-sorted membership equational logic [76] theory with a set of
(possibly conditional) Σ-sentences E which have equations t = t′ and memberships t : s

11

3. Preliminaries: Rewriting Logic and the Maude System

as atoms, and a set of equational attribute sets A (e.g., associativity, commutativity,
identity, . . .) for operators defined in Σ; and

• R is a set of (possibly conditional) rewrite rules of the form

t→ t′ if cond , cond :=
∧

l

ul = u′l ∧
∧

m

vm : sm ∧
∧

n

wn → w′
n

with t, t′ Σ-terms, and cond the rule’s condition. Additionally, a rewrite theory can
contain so-called frozen arguments where rewrites are forbidden.

A concurrent system is modelled by (Σ, E ∪A,R) as follows:

1. The states of the system are modeled as elements of the initial algebra (algebraic data
type) TΣ/E associated to the equational theory (Σ, E ∪A).

2. The local atomic transitions of the concurrent system are parametrically modeled by
the rewrite rules in R; that is, a rewrite rule t → t′ if cond specifies that if a state
fragment is a substitution instance of the pattern t and satisfies condition cond , then
that system fragment can perform a local transition to a new state which is the cor-
responding substitution instance of the pattern t′. Many such transitions can happen
concurrently in the system; rewriting logic models all the concurrent transitions pos-
sible in the system [75].

Deduction in rewriting logic consists of the concurrent application of the rewriting rules in
R modulo the equations in E ∪A.

3.2. The Maude system

The Maude system [35] is a high-performance implementation of rewriting and its underlying
membership equational logic. Other examples for languages based on rewriting logic are
OBJ3 [52] — the historical precursor to Maude — ELAN [28], and CafeOBJ [39]. Maude is
capable of executing rewrite theories, which are specified as modules with a self-explanatory
type-writer syntax that is almost isomorphic to the mathematical syntax. Modules are the
key concept of Maude and can be functional modules, representing equational theories, and
system modules, representing rewrite theories. Computation with these modules corresponds
to deduction by rewriting. Maude and its tool environment can be used in three, mutually
reinforcing ways [35]:

• as a declarative programming language,

• as an executable formal specification language, and

• as a formal verification system.

The language design aims to maximize simplicity, expressiveness, and performance. The
book “All About Maude — A High-Performance Logical Framework” [35] provides a com-
prehensive description and documentation of Maude’s features. In the following we shortly
present some of the concepts that we use in this thesis.

12

3.2. The Maude system

3.2.1. Specification of real-time and probabilistic systems

Rewriting logic and Maude in particular can naturally model systems that can be both real-
time and probabilistic. Real-Time systems are supported by rewrite theories (Σ, E ∪ A,R)
whose underlying equational theory (Σ, E ∪A) includes an algebraic data type to represent
time instants (which may be either discrete or continuous) among its types, and whose
global states are pairs of the form (t, r), with t a term representing a “discrete” state, and
r a time value representing the global clock. The rewrite rules in R can then be either
instantaneous rules, that do not change the global clock, or tick rules, that advance the
global time (see [89]). Probabilistic systems, which may also be real-time systems, are
modeled by probabilistic rewrite rules of the form

l : t(~x)→ t′(~x, ~y) if cond(~x) with probability ~y := πl(~x)

where the righthand side term t′ has new variables ~y disjoint from the variables ~x appearing
in t which make the application of the rule non-deterministic. The probabilistic nature of
the rule is expressed by the probability distribution πl(~x) with which values for the extra
variables ~y are chosen. The distribution is, in general, not fixed but parametric in the
righthand side variables ~x (see [35]). We refer to [35] for the systematic transformation
of the declarative definition of a probabilistic rewrite theory into a corresponding Maude
specification which simulates it. The Maude notation is used for probabilistic rewrite rules
in this thesis.

3.2.2. Specification of object-oriented systems

The Cloud Computing systems that we consider in this thesis are object-oriented distributed
systems where objects communicate via asynchronous message passing. We briefly explain
how such systems are formally specified in rewriting logic and Maude. For an object o,
an object-oriented specification defines a class C and a unique name o that identifies it.
Its state is a record structure of the form a1 : v1, . . . , an : vn with a1 . . . , an the object’s
attributes (state variables), and v1 . . . , vn the corresponding values currently stored in those
attributes. Therefore, an object in a given state can be represented as a term of the form
〈o : K | a1 : v1, . . . , an : vn〉. All objects in a system are terms of sort Object . A message
addressed to object o with contents d can be represented as a term (o← d); and all messages
in a system are terms of sort Message. The distributed state of such an object-based system
is a multiset or “soup” of objects and messages, called a configuration. Mathematically,
this is specified by declaring a sort Configuration with subsort inclusions Object ,Message <
Configuration , and an associative and commutative multiset union operator with empty
syntax: __ : Configuration Configuration −→ Configuration and with identity element
null . The dynamic behavior of a distributed object-based system can then be specified by
rewrite rules that describe how an object behaves upon receiving a certain type of message.
In their simplest, Actor-like form, they are rules of the form

(o← d) 〈o : K | a1 : v1, . . . , an : vn〉 → 〈o : K | a1 : v
′
1, . . . , an : v′n〉 (o1 ← d1) . . . (on ← dn)

That is, upon receiving message (o← d) object o can change its state, and can send several
messages to other objects. Although not indicated in the rule above, the righthand side
may also include new objects, so that dynamic object creation is also supported. We use

13

3. Preliminaries: Rewriting Logic and the Maude System

the concept of objects at several points in this thesis but sometimes introduce different
syntax that better reflects the underlying specification and domain-specific syntax.

3.2.3. Parameterized modules

Both, functional and system modules, can be parameterized by a parameter theory P .
A parameterized module M [X :: P] has a formal parameter X satisfying P ; M can be
instantiated by another module Q via a theory interpretation V : P −→ Q, called a view,
with the usual pushout semantics [35]. The resulting module is denoted by M [V] or shorter
M [Q] if V is clear from the context.

3.2.4. Formal meta-object patterns

Adaptation is a challenge when designing, building, or verifying distributed systems, because
these systems need to function in highly unpredictable and potentially hostile environments.
To meet these adaptation challenges and the associated requirements, a modular approach
based on meta-objects can be extremely useful. A meta-object is an object which dynami-
cally mediates/adapts/controls the communication behavior of one or several objects under
it. Meta-object models include work on meta-actors such as the onion-skin model [3] and
the TLAM model [109]. These models have been formalized in rewriting logic and extended
in various ways in, e.g., [78, 102].

In rewriting logic, a meta-object can be specified as an object of the form 〈o : K | conf :
c, a1 : v1, . . . , an : vn〉, where c is a term of sort Configuration , and all other v1 . . . , vn are not
configuration terms. The configuration c contains the object or objects that the meta-object
o controls. If c contains a single object, the meta-object o is sometimes called an onion-skin
meta-object [3], because o itself could be wrapped inside another meta-object, and so on,
like the skin layers in an onion. More generally, c may not only contain several objects
o1 . . . , om inside: it may also be the case that some of these oi are themselves meta-objects
that contain other objects, which may again be meta-objects, and so on. That is, the more
general reflective meta-object architectures are so-called “Russian dolls” architectures [78],
because each meta-object can be viewed as a Russian doll which contains other dolls inside,
which again may contain other dolls, and so on. Both the onion-skin and the TLAM [109]
models are special cases of this general Russian dolls model. In this work we will present
meta-object patterns that illustrate both the onion-skin case, and the general Russian dolls
case.

14

4 C
h

ap
te

r

Formal Languages for the Design and
Analysis of Cloud-based Architectures

In this chapter, our goal is to develop a formal language in which Cloud Computing archi-
tectures can be specified and analyzed. At a high level, Cloud Computing is the distribution
of tasks and data across multiple computing sites, which are often referred to as nodes. A
related issue is the communication and coordination between participating nodes to achieve
various service properties for the software and services running in the network. However,
questions regarding the architectural design and the satisfaction of service properties (e.g.
security and liveness properties) of such systems arise. In the following, we

1. give an introduction to coordination languages (Section 4.1),

2. introduce the KLAIM language specification (Section 4.2),

3. develop M-KLAIM, a Maude-based formal executable specification of the KLAIM
coordination language (Section 4.3),

4. extend M-KLAIM to OO-KLAIM for object-oriented specifications
(Section 4.5),

5. extend OO-KLAIM to D-KLAIM for distributed object-oriented specifications
(Section 4.6),

6. and lastly show how specifications based on the aforementioned languages can be
formally analyzed (Section 4.7).

We will show that the definition of the formal languages based on KLAIM provide a way to
specify Cloud Computing architectures, and that these specifications are not only executable,
but also analyzable using model checking.

15

4. Formal Languages for the Design and Analysis of Cloud-based Architectures

4.1. Introduction to Coordination Languages

According to the article “Coordination Languages and their Significance” [51], where the
term coordination language was first mentioned, the term was created “to designate the lin-
guistic embodiment of a coordination model” and to identify such languages as members
of a class of complete coordination languages “in their own rights, not mere extensions to
some host language”. Part of the proposal is to separate the concerns of computation and
communication (also coordination) into two different models. The computation model is
used to express computational activities, whereas the coordination model provides opera-
tions to create computational activities and to support communication and synchronization
among them. Both models can be integrated into a single language, or they can be sepa-
rated into two distinct languages. Gelenter et al., the originators of the Linda coordination
language, prefer the second alternative, where one chooses specialized languages for the
different concerns of computation and coordination.

4.1.1. Linda

Linda is a coordination language developed by Gelernter et al. at Yale University [51, 50]
and is an independent coordination model that can be added to any base language with no
change to the base language semantics. Communication in Linda relies on an asynchronous
and associative mechanism which is based on a global environment that can be compared
to a logically shared object memory. This environment is called a tuple space, which itself
represents a bag (multiset) of tuples, i.e., a bag of ordered sequences of typed data items.
All Linda processes have access to the tuple space and are able to generate tuple-structured
data objects and read tuples from the tuple space. Tuples are selected by processes using
associative pattern-matching, where two tuples match if they have the same number of fields
and the corresponding fields match. Fields are either values or variables, where two values
match if they are equal and variables match any value of the same type. At a high level,
tuple selection can be compared to a query on a relational database. Linda offers four
primitives for the interaction of processes with the tuple space:

out(t) writes a tuple into the tuple space

eval(t) dynamically creates a process that evaluates t and writes

the result into the tuple space

in(t) evaluates t and, if existent, consumes, i.e., reads and removes,

a matching tuple t′ from the tuple space

rd(t) evaluates t and, if existent, reads a matching tuple t′

while keeping t′ in the tuple space

out(t) and eval(t) are non-blocking operations, whereas in(t) and rd(t) block until a match-
ing tuple t′ for the evaluated tuple t is available in the tuple space. When several tuples
match the evaluated tuple, one of the matching tuples is selected non-deterministically. Fur-
thermore, if several rd(t) or in(t) operations are waiting for the same evaluated tuple, the
operation that is selected to proceed is chosen non-deterministically. The original Linda lan-
guage proposal further introduces two non-blocking predicative operations, namely rdp(t)

16

4.1. Introduction to Coordination Languages

Tuple Space

“token”

P1 P2
in(“token”)

Tuple SpaceP1 P2

in(“token”)

(blocks)

Tuple Space

“token”

P1 P2

in(“token”)

(blocks)
out(“token”)

Tuple Space

“token”

P1 P2
in(“token”)

Figure 4.1.: Example of process synchronization using the Linda model

and inp(t), which evaluate to false if no tuple t′ that matches the evaluation of t is present
in the tuple space. If a matching tuple t′ is found, the tuple is read (rdp(t)) or consumed
(inp(t)). The Linda model is a simple, yet powerful abstraction of communication and al-
lows processes to use the primitives for data manipulation and synchronization alike. For
example, one-to-one, broadcast, many-to-one, and other communication patterns can be
created by a combination of the Linda primitives. Implementations of the Linda model
exist for various programming languages including Java [119] and C++ [41].

Example 4.1: Synchronization using the Linda model
Figure 4.1 gives an example of how two processes P1 and P2 can be synchronized using the
Linda coordination model. A tuple that consists only of the String field “token” is already
stored in the tuple space. It is removed by P1 using the in(“token”) operation. While P1

holds the “token”-tuple, process P2 tries to acquire the token by performing the in(“token”)
operation. For our example, we assume that only one such “token”-tuple exists. As such,
the operation called by P2 on the tuple space blocks. Only after P1 writes the “token”-
tuple back into the tuple space using the out(“token”) operation, the blocked in(“token”)
operation of P2 unblocks and is able to acquire the tuple from the tuple space. In summary,
the “token”-tuple in our example acts as a mutex (binary semaphore) [40], where in(“token”)
corresponds to the P-operation and out(“token”) corresponds to the V-operation on general
semaphores.

17

4. Formal Languages for the Design and Analysis of Cloud-based Architectures

4.1.2. Advantages of Coordination Languages

According to [51], the strengths of Linda and coordination languages in general arise from
two generic principles – separation and generality :

Separation: Separation of computation and coordination favors portability and support for
heterogeneity. Portability means that acquired knowledge, tools, and implementations
that deal with coordination can be reused when moving from one platform, language,
or parallelism model to another. Having two separate languages for the concerns of
computation and coordination allows the programmer to switch the base language
without giving up the coordination model. The support for heterogeneity is a gener-
alization of portability, because a single coordination model may be used to combine
systems built on different base languages.

Generality: The advantages of having a general-purpose coordination language are economy,
flexibility, and intellectual focus. Generality expresses a language’s ability to be used
for all kinds of concurrent applications “from multi-threaded applications executing
on a single processor, through tightly-coupled, fine-grained parallel processing appli-
cations, to loosely-coupled, coarse-grained distributed applications” [118]. It favors
simplicity (conceptual economy) and enables the possibility of focusing on a general
model for several related problems. In terms of flexibility, a coordination language
such as Linda is able to logically express different forms of communication, including
message passing, shared memory, or RPC.

The advantages of coordination languages address many properties of cloud computing
architectures. Cloud computing often operates upon a highly heterogeneous system were
different computing sites collaborate to achieve common goals. Applications in such an en-
vironment may be built upon different base languages and run on different platforms. Using
a coordination language as a foundation for our models of cloud computing architectures,
we are able to express various problems in a unified model.

4.2. KLAIM

In [38], De Nicola et al. present KLAIM, a coordination language for mobile computing which
supports the specification of processes that can be moved between computing environments.
We develop a Maude-based formal executable specification of KLAIM in rewriting logic,
named M-KLAIM, that is used as a foundation for the specification of further coordination
languages and Cloud Computing. In the following, we give an overview of KLAIM and
discuss the general design of our executable specification. Furthermore, we present CINNI
[99], a calculus of explicit substitutions, and apply it to the M-KLAIM specification.

4.2.1. Overview of KLAIM

KLAIM (Kernel Language for Agents Interaction and Mobility) is a kernel programming
language for mobile computing. The language’s basic operators were influenced by process
algebras like CSP [63], CSS [84] and the π-calculus [85]. Additionally, Linda’s primitives
are used and enriched with explicit localities. These localities allow distinguishing between

18

4.2. KLAIM

multiple computing sites and the distribution of the tuple space across such sites. A locality
can be either a physical or a logical locality. This separation allows for a program to be
written independently from the network’s physical setup. Again, the network structure, the
mapping between logical and physical localities, and the distribution of processes, can be
rearranged without any changes to the program. The specification of KLAIM also includes a
type system that statically checks security properties, i.e., whether the intended operations
of a process comply with its access rights. For reasons of simplicity, we have omitted the
type system in our Maude-based specification of KLAIM.

Net syntax

At the highest level of abstraction, the KLAIM model specifies a soup of nodes, called a
net. A node is a triple (s, P, ρ) where s is a site, P is a process, and ρ defines an allocation
environment. A site can be thought of as a globally valid identifier for a node. Logical
localities, i.e., symbolic names for a site, allow programs to reference nodes while ignoring the
precise allocation between these names and actual sites. The distinguished logical locality
self refers to the current execution site. These localities are considered to be first-order
data which can be created dynamically and shared using the tuple space. Each node has a
specific allocation environment, which is a (partial) function from logical localities to sites.
[s/l] denotes the environment that maps the logical locality l to the site s. ρ1 • ρ2 denotes
the allocation environment that combines the environments ρ1 and ρ2 and is defined by:

ρ1 • ρ2(l) =

{

ρ1(l) if ρ1(l) is defined

ρ2(l) otherwise

In KLAIM, sites are also considered to be logical localities for which the allocation envi-
ronment acts as the identity function. Additionally, it is assumed that for an allocation
environment ρs at site s the equation ρs(self) = s holds. Nodes that fulfil this property are
said to be well-formed. Finally, a net is composed of a set of Nodes:

N ::= s ::ρ P (A single node (s, P, ρ))

| N1 ‖ N2 (Net composition)

A KLAIM net is said to be legal if each node is well-formed and is assigned a distinct site
in the net.

Example 4.2: A legal KLAIM net
In the following example let s1, s2 be sites, l1, l2 be logical localities, ρ1, ρ2 be allocation
environments, and P,Q be processes:

s1 ::ρ1:=[s1/self]•[s1/l1]•[s2/l2]•[s2/l1] P ‖ s2 ::ρ2:=[s2/self] Q

This net is a legal net as each node is well-formed (ρ1(self) = s1, ρ2(self) = s2) and is being
assigned a distinct site in the net. Evaluating ρ1(l1) yields s1 according to the definition of
composed allocation environments. The mapping [s2/l1] in ρ1 is never considered for the
evaluation on l1 as [s1/self] • [s1/l1](l1) is already defined.

19

4. Formal Languages for the Design and Analysis of Cloud-based Architectures

P ::= nil (null process)

| a.P (action prefixing)

| P1 | P2 (parallel composition)

| P1 + P2 (nondeterministic choice)

| X (process variable)

| A〈P̃ , l̃, ẽ〉 (process invocation)

a ::= out(t)@l | in(t)@l | read(t)@l | eval(P)@l | newloc(u)

t ::= e |P | l | !x | !X | !u | t1, t2

Figure 4.2.: KLAIM process syntax

Process syntax

KLAIM processes are built using operators borrowed from Milner’s CCS [84]. The nil

process term represents the process that cannot perform any action. Given processes P1

and P2, P1 | P2 (respectively P1 + P2) stands for the parallel composition of (respectively
the non-deterministic choice between) the two processes P1 and P2. A process can be a
process variable or a process invocation A〈P̃ , l̃, ẽ〉, where P̃ is a sequence of processes, l̃
a sequence of localities, and ẽ a sequence of expressions. KLAIM assumes that a process
identifier A has a unique defining equation A(X̃, ũ, x̃) =def P , with X̃ a sequence of process
variables, ũ a sequence of locality variables, x̃ a sequence of expression variables, and P
being a process. It is further assumed that all free variables in P are contained in the set
of variable sequences {X̃, ũ, x̃} and that each process identifier is guarded within the scope
of a blocking in or read action prefix to prevent the immediate re-execution of a process
invocation, which would result in an infinite loop. read and in are two of four actions
that can prefix a process. The KLAIM actions out(t)@l, eval(P)@l, read(t)@l, and in(t)@l
correspond to the Linda operations to generate tuples (out), spawn processes (eval), read
tuples (rd), and consume tuples (in). In KLAIM, the operations have logical localities as
a postfix, which denote the sites the actions address. t stands for a tuple which is a list
of expressions, processes, localities (including locality variables) and formal fields. Formal
fields are of the form !v, where v is either an expression variable, a process variable, or a
locality variable. In addition to the operations borrowed from Linda, the newloc(u) action
is used to create fresh sites. The locality variable u refers to that fresh site in the prefixed
process. Figure 4.2 gives an overview of the process syntax.

In KLAIM, the newloc(u).P , read(t)@l.P and in(t)@l.P actions act as binders for vari-
ables that are used in the process P . For example, in newloc(u).P | in(!x, !X).Q, the locality
variable u is bound in process P , and the variables x and X are bound in process Q. KLAIM
specifies a process to be a term without free variables. Therefore, each variable must be
bound by a binder.

20

4.2. KLAIM

Example 4.3: A legal KLAIM process term
In the following example, let l1, l2 be logical localities, X a process variable, x an expression
variable, u a locality variable, and 7 a value expression:

P := in(!X)@self .A〈X, l1, 7〉 + out@l2(7).nil A(X,u, x) =def out(x)@u.X

The process identifier A has the unique definition out(x)@u.X. The free variables x, u,X
are contained in {X,u, x} and the process identifier occurs within the scope of a blocking
in prefix which also binds the free process variable X. As no other free variables occur in
the term, P is a legal KLAIM process term.

Operational Semantics

KLAIM’s operational semantics is given in the structural operational semantics (SOS) style
and differentiates between two semantics: the symbolic semantics and the reduction relation.
The semantics proceeds in two steps. First, the symbolic semantics specifies the effects of
actions on the tuple space which, in KLAIM, is reflected at the process level and defines the
process commitments related to localities and the allocation environment. In a second step,
the reduction relation fully describes the process behavior in a net.

The structural rules of the the symbolic semantics specify the possible transitions of
KLAIM processes. The resulting labeled transition system does not take the physical lo-
cation of processes and the tuple space into account. In the transition system, the labeled
transition

P
µ
−→
ρ

P ′

describes how process P evolves to process P ′. The label µ gives an abstract description
of what activity is performed and the label ρ stands for the allocation environment that
records the local bindings that must be taken into account to evaluate µ. For example, the
rules to send and consume a tuple

out(t)@l.P
s(t)@l
−−−−→

φ
P

in(t)@l.P
i(t)@l
−−−→

φ
P

specify that a process P with the prefix out(t)@l or in(t)@l is able to evaluate to process P
with the side effect of sending the tuple t to l (µ = s(t)@l) or consuming the tuple t from
l (µ = i(t)@l). Both rules also state that the allocation environment does not have to be
taken into account to evaluate the activities, i.e., the empty allocation environment has to
be taken into account (ρ = φ). The whole set of structural rules is depicted in Figure 4.3.

KLAIM reflects the tuple space at the process level, where tuples are modeled as processes.
The auxiliary process out(et), whose symbolic semantics is given by the structural rule

out(et)
o(et)@self
−−−−−−→

φ
nil

denotes the presence of the evaluated tuple et in the tuple space. Tuples are evaluated using
the tuple evaluation function T [[.]]ρ, which exploits the allocation environment to resolve

21

4. Formal Languages for the Design and Analysis of Cloud-based Architectures

out(t)@l.P
s(t)@l
−−−−→

φ
P eval(t)@l.P

e(t)@l
−−−−→

φ
P

in(t)@l.P
i(t)@l
−−−→

φ
P read(t)@l.P

r(t)@l
−−−−→

φ
P

newloc(u).P
n(u)@self
−−−−−−→

φ
P

P
µ
−→
ρ

P ′

P +Q
µ
−→
ρ

P ′

Q
µ
−→
ρ

Q′

P +Q
µ
−→
ρ

Q′

P
µ
−→
ρ

P ′

P | Q
µ
−→
ρ

P ′ | Q

Q
µ
−→
ρ

Q′

P | Q
µ
−→
ρ

P | Q′

P
µ
−→
ρ′

P ′

P{ρ}
µ
−−→
ρ′•ρ

P ′{ρ}

P [P̃ /X̃, l̃/ũ, ẽ/x̃]
µ
−→
ρ

P ′

A〈P̃ , l̃, ẽ〉
µ
−−→
ρ•ρ

P ′

Figure 4.3.: Structural rules of KLAIM’s symbolic semantics

locality names. The rules for T [[.]]ρ are depicted in Figure 4.4, where E [[.]] evaluates closed
expressions to values. The evaluation of a process P , T [[P]]ρ introduces the concept of the
process closure P{ρ}, which combines the process P with the allocation environment ρ.

Nets are identified up to the smallest congruence such that the net composition ‖ is
associative and commutative. The reduction relation describes the process behavior in a net
and provides rules for actions that affect the local node and rules for actions that affect a
remote node. Syntactically, the reduction transition

N N ′

describes the evolution of net N to N ′. The local and remote rules for the out operation

(1)

P
s(t)@l
−−−−→

ρ′
P ′ s = ρ′ • ρ(l) et = T [[t]]ρ′•ρ

s ::ρ P s ::ρ P ′ | out(et)

(2)

P1
s(t)@l
−−−−→

ρ
P ′
1 s2 = ρ • ρ1(l) et = T [[t]]ρ•ρ1

s1 ::ρ1 P1 ‖ s2 ::ρ2 P2 s1 ::ρ1 P ′
1 ‖ s2 ::ρ2 P2 | out(et)

add a new auxiliary process to the local (rule (1)) or to a remote (rule (2)) process and
thereby put a new tuple into the tuple space. In rule (2), the tuple t is evaluated using the
allocation environment ρ•ρ1, which means that if the process has a closure P{ρ}, its closure

22

4.2. KLAIM

T [[e]]ρ = E [[e]]

T [[P]]ρ = P{ρ}

T [[l]]ρ = ρ(l)

T [[!x]]ρ = !x

T [[!X]]ρ = !X

T [[!u]]ρ = !u

T [[t1, t2]]ρ = T [[t1]]ρ,T [[t2]]ρ

Figure 4.4.: Inductive definition of KLAIM’s tuple evaluation function

match(v, v) match(P,P) match(s, s)

match(!x, v) match(!X,P) match(!u, s)

match(et2, et1)

match(et1, et2)

match(et1, et3) match(et2, et4)

match((et1, et2), (et3, et4))

Figure 4.5.: KLAIM’s matching rules

is used in conjunction with the local allocation environment ρ1 to evaluate the tuple. If the
process has no closure, the equation ρ = φ holds, and the tuple is evaluated using only the
local allocation environment ρ1 = φ • ρ1. Finally, if a tuple is sent to a remote node, the
sending process’ closure and the sending node’s allocation environment are used to evaluate
the tuple. The other rules of KLAIM’s reduction relation (Figure A.1) evaluate tuples in a
similar way.

Pattern matching is used to identify appropriate tuples for an in or read operation. For
example, the rule to consume a tuple from a remote node

(6)

P1
i(t)@l
−−−→

ρ
P ′
1 s2 = ρ • ρ1(l) P2

o(et)@self
−−−−−−→

φ
P ′
2 match(T [[t]]ρ•ρ1 , et)

s1 ::ρ1 P1 ‖ s2 ::ρ2 P2 s1 ::ρ1 P ′
1[et/T [[t]]ρ•ρ1] ‖ s2 ::ρ2 P ′

2

uses pattern matching to match the remotely available evaluated tuple with the evaluation
of the tuple that is the argument of the in operation. KLAIM’s matching rules are shown
in Figure 4.5, where v denotes a value, P a process, s a site, !x an expression variable, !X a
process variable, !u a locality variable, and eti with i ∈ {1, 2, 3, 4} denote evaluated tuples.

To reflect the fact that a site is present only once in a net, the rule

(11)
N1 N ′

1 st(N ′
1) ∩ st(N2) = ∅

N1 ‖ N2 N ′
1 ‖ N2

23

4. Formal Languages for the Design and Analysis of Cloud-based Architectures

states that a net within a composed net may only make a step if no site is used twice. The
helper function st(N) thereby simply returns the set of sites in N . All rules of the reduction
relation are listed in Figure A.1 in the Appendix.

Example 4.4: Communication between nodes in KLAIM
In the following example, we consider a net consisting of three nodes that are located at
the sites s1, s2 and s3. The nodes are all well-formed, since their allocation environments
ρi, i ∈ {1, 2, 3} are well-defined (rhoi(self) = si). Furthermore, the logical locality l2 is
mapped to s2 in ρ1 and ρ3. An out operation at site s1 first triggers a transition as described
in the symbolic semantics:

s1 ::ρ1
out(7)@l2.nil ‖ s2 ::ρ2

nil ‖ s3 ::ρ3
in(!x)@l2.P

nil

s(7)@l2

Now the corresponding rule of the reduction relation adds the evaluated tuple 7 to the
process at s2, which is the site that the logical locality l2 maps to in the allocation environ-
ment at site s1. Simultaneously, the symbolic semantics allows for transitions to be made
by the action at site s3 and the auxiliary process at site s2:

s1 ::ρ1
nil ‖ s2 ::ρ2

out(7) ‖ s3 ::ρ3
in(!x)@l2.P

nil P

o(7)@self i(!x)@l2

In a last step, the rule for a remote consumption of a tuple allows the tuple 7 of site s2
to be consumed by the in operation at site s3 since the expression variable !x matches with
any value:

s2 ::ρ2
nil‖s1 ::ρ1

nil ‖ s3 ::ρ3
P [7/!x]

4.3. M-KLAIM — a Maude-based specification of KLAIM

Rewriting logic [75] supports the executable specification of KLAIM’s syntax and structural
operational semantics. This can be done in several definitional styles [101], which can exactly
mirror any desired SOS style. In this work, we aim at an efficient executable specification
of KLAIM and therefore do not follow the SOS style of Section 4.2 au pied de la lettre.
That is, the inference rules of the structural operational semantics have not been specified
as given, but have been transformed to rewrite rules that allow for better executability. In
terms of syntax, the Maude-based implementation was designed to be as close as possible to
KLAIM’s notation. In the following, we give an overview of the modules in the Maude-based
executable specification and describe each module in more detail.

24

4.3. M-KLAIM — a Maude-based specification of KLAIM

KLAIM-SEMANTICS

KLAIM-SYNTAX TUPLE-EVALUATION CINNI

PROCESS-CONTEXT

PROCESS-SYNTAX
EXPRESSION-
SEMANTICS

ALLOCATION-
ENVIRONMENT

EXPRESSION-
SYNTAX

LOCALITY

Figure 4.6.: Overview of Maude modules of the M-KLAIM specification

4.3.1. Overview

Figure 4.6 gives a basic overview of the Maude modules and their submodule dependen-
cies. The module LOCALITY contains the main sorts and operations for logical and phys-
ical localities. KLAIM’s allocation environment, i.e., the mapping between logical and
physical localities, is described in the module ALLOCATION-ENVIRONMENT. The syn-
tax and semantics of expressions are given in the modules EXPRESSION-SYNTAX and
EXPRESSION-SEMANTICS. The syntactic elements of processes and tuples are described
in the module PROCESS-SYNTAX. The module PROCESS-CONTEXT defines the sorts,
operations and conditional requirements for process definitions which are used for process
invocations. The module TUPLE-EVALUATION includes the description of the tuple eval-
uation and matching mechanisms. Substitutions are handled by the CINNI calculus, whose
implementation is specified in the module CINNI. Section 4.4 gives an introduction to CINNI
and further describes the application of the calculus to KLAIM and its implementation. The
top level sorts and operators of KLAIM are described in the module KLAIM-SYNTAX. Fi-
nally, the module KLAIM-SEMANTICS defines the rewriting semantics of nets. For the
evaluation of process invocations, the process context is used. To allow for greater flexibility,
the context is statically defined and is passed to KLAIM-SEMANTICS as a parameter.

25

4. Formal Languages for the Design and Analysis of Cloud-based Architectures

4.3.2. Description of modules

The following descriptions of modules show how KLAIM’s SOS specification style of Section
4.2 is translated to Maude.

LOCALITY

The module LOCALITY includes the sort and constructor operator declarations for KLAIM
localities. The sort Locality denotes logical localities. The sort for quoted identifiers, Qid, is
defined to be a subsort of Locality and, as such, provides a simple way to construct logical
localities. Physical localities are represented by the sort Site, which is defined as a subsort of
the sort Locality, as KLAIM states that physical localities can be used as logical localities.
Sites are constructed using the operator site, with a single argument of sort Qid.

sorts Locality Site LocalityVar LocalityVarName .

subsort Qid Site LocalityVar < Locality .

op self : -> Locality [ctor] .

op site_ : Qid -> Site [ctor prec 15] .

ALLOCATION-ENVIRONMENT

The allocation environment describes the mapping between logical and physical localities.
Terms of sort AllocationEnvironment are constructed by the empty allocation environment {},
the mapping [S/L] assigning to a logical locality L a site S, and the concatenation ρ1 * ρ2 of
two allocation environments ρ1 and ρ2.

sort AllocationEnvironment .

op {} : -> AllocationEnvironment [ctor] .

op [_/_] : Site Locality -> AllocationEnvironment [ctor] .

op _*_ : AllocationEnvironment AllocationEnvironment

-> AllocationEnvironment [ctor assoc id: {}] .

The evaluation operator

op _(_) : AllocationEnvironment Locality -> Locality [memo] .

takes an allocation environment and a locality as arguments and, if a mapping for the locality
is present in the allocation environment, returns the site the locality is mapped to. In the
following description of the behavior of the evaluation operator, the variables

var RHO : AllocationEnvironment .

vars L L1 L2 : Locality .

var S : Site .

are used. The equation

eq [evaluation-base] : {}(L) = L .

deals with the base case of the evaluation, where the evaluation operator is applied to
an empty allocation environment. In this case, the locality is itself is returned. The two
equations

eq [evaluation-rec1] : [S / L] * RHO(L) = S .

ceq [evaluation-rec2] : [S / L1] * RHO(L2) = RHO(L2) if L1 =/= L2 .

26

4.3. M-KLAIM — a Maude-based specification of KLAIM

recursively decompose the allocation environment. Finally, the Equation

eq [evaluation-site] : RHO(S) = S .

specifies that the evaluation function acts as an identity on sites.

EXPRESSION-SYNTAX

KLAIM does not explicitly specify a syntax and semantics for expressions. The only require-
ment it makes for expressions is that (fully evaluated) ground terms of expressions should be
either values or variables. In M-KLAIM, we therefore developed a simple expression model
based on natural numbers.

Expressions are of sort Expression. The sort is a supersort of the sorts Val for values and
Var for variables, i.e. values and variables are basic expressions.

sorts Expression Val Var .

subsorts Var Val < Expression .

Values are constructed by the operator

op [_] : Nat -> Val [ctor] .

which takes a natural number as an argument. Variables are named representatives of
expressions. The Maude-based KLAIM specification used the CINNI calculus to handle
variables and its substitutions. The CINNI calculus and its application to M-KLAIM are
described in Section 4.4. In addition to values and variable, expressions are constructed by
the operator

op _+e_ : Expression Expression -> Expression

[assoc comm ctor prec 16] .

which takes two expressions as arguments.

EXPRESSION-SEMANTICS

In KLAIM, expressions are tuples which can be evaluated using a tuple evaluation function.
When a tuple evaluation function is applied to an expression, the tuple evaluation function
calls an expression evaluation function. The expression evaluation operator

op E[|_|] : Expression -> Nat .

takes an expression as an argument and, in our expression model, returns a natural number.
For the description of the semantics of the evaluation operator, the variables

vars E1 E2 : Expression .

var N : Nat .

are used.
The expression evaluation (partial) function is only defined for closed expressions, i.e.,

expressions that do not contain expression variables. If the expression evaluation operator
is applied to a single value, it returns that value.

eq [expression-evaluation-base] : E[|[N]|] = N .

If the operator is applied on a sum of two expressions, it is recursively applied to the sum’s
arguments. The result is the sum of the evaluation of the arguments. The sum operator for
natural numbers is predefined in Maude.

27

4. Formal Languages for the Design and Analysis of Cloud-based Architectures

Tuple

EvaluatedTuple

TupleElt

Expression SyntacticProcessLocality

EvaluatedTupleElt

Val Site

Figure 4.7.: Subsort hierarchy in the PROCESS-SYNTAX module

eq [expression-evaluation-rec] : E[| E1 +e E2 |]

= E[| E1 |] + E[| E2 |] .

This generic specification of a expression model based on natural numbers can easily be
replaced by a more expressive specification of arbitrary expressions on other data types of
values, provided the operators used are fully defined (sufficiently complete) on such data
types.

PROCESS-SYNTAX

KLAIM processes serve two purposes. First, they capture the behavior of a node in the net,
i.e., the actions it performs, and, second, a node’s tuple space is syntactically represented
in the process. We distinguish between the sorts SyntacticProcess and AuxiliaryProcess. The
supersort Process encapsulates these two different types of processes.

sorts Action SyntacticProcess AuxiliaryProcess Process .

subsort SyntacticProcess AuxiliaryProcess < Process .

Terms of sort SyntacticProcess specify processes that are constructed using the KLAIM
syntax for processes and process closures. The sort AuxiliaryProcess defines the auxiliary
process terms constructed by the operator

op out(_) : EvaluatedTuple -> AuxiliaryProcess [ctor] .

which can only interact with corresponding in or read actions of syntactic processes. Aux-
iliary processes represent the tuple space in KLAIM: Evaluated tuples are stored inside
auxiliary processes, which in turn are part of a process.

In order to distinguish between a tuple and a tuple on which the evaluation function has
been applied, we introduce the two sorts Tuple and EvaluatedTuple. The sort Tuple represents
KLAIM tuples and EvaluatedTuple the results of the tuple evaluation function. However,
every evaluated tuple is itself again a tuple. Therefore, the sort EvaluatedTuple is a subsort
of the sort Tuple. Tuples or evaluated tuples that cannot be decomposed any further are
denoted by the two sorts TupleElt and EvaluatedTupleElt. Figure 4.7 gives an overview of
the subsort relation between the sorts in the module PROCESS-SYNTAX. An arrow from
one sort to another represents the subsort inclusion relationship, e.g., Locality → TupleElt

states that the sort Locality is a subsort of TupleElt.
The sort SyntacticProcess and its constructors capture KLAIM’s process constructs:

• The constant

28

4.3. M-KLAIM — a Maude-based specification of KLAIM

op nil : -> SyntacticProcess [ctor] .

constructs the null process.

• The operator

op _._ : Action SyntacticProcess -> SyntacticProcess

[frozen ctor prec 25] .

is used to create a process with an action prefix.

• The operator

op _|_ : Process Process -> Process

[frozen assoc comm ctor id: nil prec 30] .

creates the parallel composition of two processes. The constant term nil is the identity
for this operator, because a nil process can never perform an action. M-KLAIM
specifies a second composition operator

op _|_ : SyntacticProcess SyntacticProcess -> SyntacticProcess

[frozen assoc comm ctor id: nil prec 30] .

specifically for syntactic processes. A process therefore is only of sort SyntacticProcess

if it contains no auxiliary processes.

• The operator

op _+_ : SyntacticProcess SyntacticProcess -> SyntacticProcess

[frozen assoc comm ctor prec 35] .

creates the nondeterministric choice of two syntactic processes.

• The operator

op _<_,_,_> : Qid ProcessSeq LocalitySeq ExpressionSeq

-> SyntacticProcess [ctor prec 25] .

constructs a process invocation. The behavior of process invocations is defined in the
process context in more detail (Section 4.3.2).

• Proccess variables construct a syntactic process. Consequently, the sort ProcessVar is
defined to be a subsort of SyntacticProcess.

sorts ProcessVar ProcessVarName .

subsort ProcessVar < SyntacticProcess .

• Additionally, we add the constructor

op _{_} : SyntacticProcess AllocationEnvironment

-> SyntacticProcess [prec 28] .

to create a process closure, i.e., a process that is closed under an allocation environ-
ment. Such an operator is not defined in the original KLAIM specification. It is used
by the M-KLAIM specification to syntactically denote closed processes.

29

4. Formal Languages for the Design and Analysis of Cloud-based Architectures

As done by Verdejo et al. in [110], we add the frozen attribute to and declare a precedence
value for the process constructors. Declaring a given operator as frozen forbids rewriting
with rules in all proper subterms of a term having such an operator as its top operator.
Hence, we prevent rewriting rules to be executed on subterms and only allow rewriting rules
for the top-level operator to proceed, which reflects KLAIM’s process semantics. In order
to prevent ambiguity, each operator is assigned a precedence value that defines how, i.e., in
what precedence order, a term is parsed in the presence of several operators.

The sorts Tuple and EvaluatedTuple respectively represent KLAIM tuples and the results
of the tuple evaluation function.

sorts Tuple EvaluatedTuple .

The associative concatenation operators

op _,_ : Tuple Tuple -> Tuple [ctor assoc prec 40] .

op _,_ : EvaluatedTuple EvaluatedTuple -> EvaluatedTuple

[ctor assoc prec 40] .

are defined for the sorts Tuple and EvaluatedTuple.
As shown in Figure 4.7, the sort TupleElt is a subsort of the sort Tuple, and the sorts

EvaluatedTupleElt, Locality, and Expression are subsorts of the sort TupleElt. Additionally,
the sort EvaluatedTuple is a subsort of Tuple and the sort EvaluatedTupleElt is a subsort of
EvaluatedTuple. Finally, the sorts Val, SyntacticProcess, and Site are subsorts of the sort
EvaluatedTupleElt.

sort TupleElt EvaluatedTupleElt .

subsort EvaluatedTupleElt Locality Expression < TupleElt < Tuple .

subsort Val SyntacticProcess Site

< EvaluatedTupleElt < EvaluatedTuple < Tuple .

KLAIM’s formal fields are constructed by the operators

op !_ : VarName -> EvaluatedTupleElt [ctor prec 15] .

op !_ : LocalityVarName -> EvaluatedTupleElt [ctor prec 15] .

op !_ : ProcessVarName -> EvaluatedTupleElt [ctor prec 15] .

which take an expression variable name, a locality variable name, or a process variable name
as an argument. In M-KLAIM, a formal field is an evaluated tuple element.

Finally, the operator definitions for KLAIM’s process prefixes (out, in, read, eval, and
newloc)

op out(_)@_ : Tuple Locality -> Action [ctor prec 20] .

op in(_)@_ : Tuple Locality -> Action [ctor prec 20] .

op read(_)@_ : Tuple Locality -> Action [ctor prec 20] .

op eval(_)@_ : SyntacticProcess Locality -> Action [ctor prec 20] .

op newloc(_) : LocalityVarName -> Action [ctor prec 20] .

construct the terms of sort Action.

TUPLE-EVALUATION

The module TUPLE-EVALUATION provides fuctions for the evaluation of tuples and the
matching of evaluated tuples. The tuple evaluation operator

op T[|_|]_ : Tuple AllocationEnvironment -> EvaluatedTuple [memo] .

30

4.3. M-KLAIM — a Maude-based specification of KLAIM

takes a tuple and an allocation environment as arguments and returns the evaluated tuple.
The commutative matching operator

op match : EvaluatedTuple EvaluatedTuple -> Bool [comm memo] .

takes two evaluated tuples as arguments and returns a boolean value of Maude’s predefined
sort Bool.

For the specification of the tuple evaluation semantics, the variables

var ET : EvaluatedTuple .

var E : Expression .

var SP : SyntacticProcess .

var L : Locality .

vars T1 T2 : Tuple .

are used. The equation

eq [tuple-evaluation-id] : T[| ET |]RHO = ET .

defines that the tuple evaluation function acts as the identity function on evaluated tuples.
As described by the equation

eq [tuple-evaluation-base1] : T[| E |]RHO = [E[| E |]] .

expressions are evaluated using the expression evaluation operator introduced in the module
EXPRESSION-SEMANTICS. A syntactic process P is evaluated to the process closed under
the evaluation function’s allocation environment ρ.

eq [tuple-evaluation-base2] : T[| SP |]RHO = SP{RHO} .

Localities are evaluated using the evaluation function of the allocation environment (Section
4.3.2).

eq [tuple-evaluation-base2] : T[| SP |]RHO = SP{RHO} .

The evaluation of a tuple sequence evaluates each tuple element and yields a sequence of
evaluated tuples. The equation

eq [tuple-evaluation-rec] : T[| T1,T2 |]RHO

= (T[| T1 |]RHO), (T[| T2 |]RHO) .

defines the recursive application of the evaluation function on all tuple elements in a tuple
sequence.

The matching operation for evaluated tuples is used by KLAIM’s semantics in order to
identify appropriate tuples for in and read operations. For the definition of the semantics
of the matching function, the variables

var V : Val .

var SP : SyntacticProcess .

var S : Site .

var VN : VarName .

var PVN : ProcessVarName .

var LVN : LocalityVarName .

vars ET ET1 ET2 : EvaluatedTuple .

vars ETE1 ETE2 : EvaluatedTupleElt .

are used.
Equal terms of values, syntactic processes, or sites do match.

31

4. Formal Languages for the Design and Analysis of Cloud-based Architectures

eq [tuple-matching-base1] : match(V, V) = true .

eq [tuple-matching-base2] : match(SP, SP) = true .

eq [tuple-matching-base3] : match(S, S) = true .

Formal fields, i.e., placeholders for any term of a certain sort, match with any term of that
specific sort. The equations

eq [tuple-matching-var1] : match(!(VN), V) = true .

eq [tuple-matching-var2] : match(!(PVN), SP) = true .

eq [tuple-matching-var3] : match(!(LVN), S) = true .

specify the matching of formal fields for expression variable names, process variable names,
and locality variable names with any expression variable, syntactic process, and site term.

Tuple sequences match if each evaluated tuple element in the first sequence matches the
associated evaluated tuple element in the second sequence.

eq [tuple-matching-rec] : match((ETE1, ET1), (ETE2, ET2))

= (match(ETE1, ETE2) and match(ET1, ET2)) .

KLAIM does not specify the behavior of the tuple matching operator when it is applied
to sequences of different length. Our design decision for M-KLAIM is to return false if the
matching operator is applied to sequences of different length. Finally, the equation

eq [tuple-matching-otherwise] : match(ET1, ET2) = false [owise] .

states that a pair of evaluated tuples does not match if it is not covered by one of the
aforementioned base cases.

PROCESS-CONTEXT

KLAIM does not specifically define a process context but uses process identifiers and defin-
ing equations for process invocations. For M-KLAIM, we decided to specify an explicit
construct, namely a process context of sort Context, to map between process identifiers (of
sort ProcessId) and defining syntactic processes.

sort Context .

sort ProcessId .

Process identifiers are named by quoted identifiers and are used by process invocations to
reference a specific mapping to a defining syntactic process. They are constructed by the
operator

op _(_,_,_) : Qid ProcessVarNameSeq LocalityVarNameSeq VarNameSeq

-> ProcessId [ctor] .

which takes the name, a sequence of process variable names, a sequence of locality variable
names, and a sequence of expression variable names as arguments. The variable names
declare the variable names that are used in the defining syntactic process.

The constructors for defining equations

op _=def_ : ProcessId SyntacticProcess -> [Context] [ctor prec 45] .

and the context composition

op _&_ : Context Context -> [Context]

[ctor assoc comm id: nilContext prec 50] .

32

4.3. M-KLAIM — a Maude-based specification of KLAIM

are partial functions, because not every context that can be constructed is regarded a valid
context by the KLAIM specification. Thus, the result of the constructor operators is in
general of kind [Context] (see [35]), and is only of sort Context for valid contexts. Additionally,
contexts are constructed by the constant

op nilContext : -> Context [ctor] .

which defines the empty process context.
A process context is valid if the context provides no more than one defining equation for

a process identifier and each defining equation is closed. In the following, we describe how
the semantics of M-KLAIM handles the validity of process contexts. For the description of
the semantics, the variables

var PID : ProcessId .

var SP : SyntacticProcess .

var CK : [Context] .

are used.
We define the isValidContext predicate and provide a conditional membership to define

the legal members of the sort Context.

op isValidContext : [Context] -> Bool .

cmb CK : Context if isValidContext(CK) .

As a first base case, the equation

eq [isValidContext-base1] : isValidContext(nilContext) = true .

defines the empty context to be a valid context. Second, the equation

eq [isValidContext-base2] : isValidContext(PID =def SP)

= isClosed(PID, SP) .

defines a single process definition to be valid if it is closed under the process identifier. The
specification of the isClosed predicate, which takes a process identifier and a syntactic process
as arguments, is not shown here. It evaluates to true if all unbound process, locality, and
expression variable names of the syntactic process are contained in the respective sequences
for the process, locality, and expression variable names of the process identifier. Lastly, the
equation

op _definedIn_ : ProcessId Context -> Bool [memo] .

eq [definedIn-base] : PID definedIn nilContext = false .

eq [definedIn-rec] : PID1 definedIn (PID2 =def SP & C) = (PID1 == PID2)

or (PID1 definedIn C) .

eq [isValidContext-rec] : isValidContext((PID =def SP) & CK)

= not(PID definedIn CK) and isClosed(PID, SP) and isValidContext(CK) .

recursively evaluates a process context composed of multiple process identifiers. For each
process identifier, it checks if it is the only definition for that identifier using the definedIn

operator and if the syntactic process is closed under the process identifier.
A process context is queried by the predicate definedIn and the operations processId and

def. The predicate

op _definedIn_ : Qid Context -> Bool [memo] .

takes a quoted identifier as an argument and returns whether a context contains a process
identifier whose name is equal to the specified quoted identifier. The operator

33

4. Formal Languages for the Design and Analysis of Cloud-based Architectures

op processId : Qid Context -> ProcessId [memo] .

is used to retrieve the process identifier for a specific quoted identifier from the context.
Finally, the operator

op def : ProcessId Context -> SyntacticProcess [memo] .

retrieves the defining syntactic process for a specific process identifier from a context.
For the definition of the semantics of the context querying operators, the variables

vars PID1 PID2 : ProcessId .

vars A1 A2 : Qid .

var SP : SyntacticProcess .

var C : Context .

var PVNS : ProcessVarNameSeq .

var LVNS : LocalityVarNameSeq .

var EVNS : VarNameSeq .

are used.
The definedIn predicate returns false if the context that is provided as an argument is

the empty context.

eq [definedIn-base] : A1 definedIn nilContext = false .

Otherwise, it recursively traverses the process context and returns true if a defining equation
for the process identifier is found.

eq [definedIn-rec] : A1 definedIn (A2(PVNS, LVNS, EVNS) =def SP & C)

= (A1 == A2) or (A1 definedIn C) .

Finally, the def operator recursively traverses a process context to find the defining syn-
tactic process for a process identifier.

eq [def] : def(PID1, ((PID2 =def SP) & C)) =

if PID1 == PID2 then SP else def(PID1, C) fi .

The specification of M-KLAIM’s semantics uses the constant

op context : -> context [ctor] .

as a reference to the process context. By default, the process context is defined to be an
empty context.

eq [default-Context] : context = nilContext [owise] .

Specifications based on M-KLAIM can specify their own process context by adding an
equation that defines the individual process context. Examples for the definition of model-
specific process contexts are shown in Sections 4.6.5 and 4.7.

KLAIM-SYNTAX

The KLAIM-SYNTAX module defines the sort

sort Net .

and constructors for KLAIM nets.
The operator to construct a node

op (_{_}::{_}_) : Site Nat AllocationEnvironment Process

-> [Net] [ctor] .

34

4.3. M-KLAIM — a Maude-based specification of KLAIM

extends the KLAIM notation for nodes with a natural number enclosed in curly braces
after the site. This number is not mentioned in the KLAIM specification. However, our
specification uses it as a counter of a node’s children. This number provides a way to
guarantee the creation of a fresh site when a newloc action is executed by one of the nodes.

Additionally, the associative and commutative net constructor operator

op _||_ : Net Net -> [Net] [config assoc comm ctor] .

combines two nets.
The constructors for nodes and nets are partial and thus have kind [Net]. This is due to

the fact that not all nodes and nets that can be constructed are well-formed and legal. For
the description of the semantics, the predefined Maude parametrized data structure SET is
imported in protecting mode, with appropriate renamings of sorts and operators.

protecting SET{Site} * (sort Set{Site} to Sites,

op _,_ : Set{Site} Set{Site} -> Set{Site} to _;;_) .

and the variables

var KN : [Net] .

var S : Site .

var SI : Sites .

var M : Nat .

var RHO : AllocationEnvironment .

var P : Process .

var N : Net .

are used.
The conditional membership

op isValidNet : [Net] Sites -> Bool [memo] .

cmb KN : Net if isValidNet(KN, empty) .

checks for the validity of nodes and nets. For a single node and a set of other sites in the
net, the predicate isValidNet returns true if and only if the evaluation of self on the node’s
allocation environment yields the site of the node, the site is not in the set of other sites in
the net, the node’s process is closed, and the node’s process does not loop indefinitely. The
equations

eq isValidNet((S { M }::{ RHO } P) || N, SI)

= isValidNet((S { M }::{ RHO } P), SI)

and isValidNet(N, S ;; SI) .

and

eq isValidNet((S { M }::{ RHO } P), SI)

= noInfiniteLoops(P)

and isClosed(P)

and RHO(self) == S

and not(S in SI) .

define the predicate’s semantics.
The predicate isClosed, which determines if a process is closed, is not shown here. For the

definition of the semantics of the operator

op noInfiniteLoops : Process -> Bool [memo] .

which determines if a process loops indefinitely, the variables

35

4. Formal Languages for the Design and Analysis of Cloud-based Architectures

var AP : AuxiliaryProcess .

var T : Tuple .

vars SP SQ : SyntacticProcess .

var L : Locality .

var LV : LocalityVarName .

vars P Q : Process .

var RHO : ALLOCATIONENVIRONMENT .

var PS : ProcessSeq .

var LS : LocalitySeq .

var ES : ExpressionSeq .

are used.
To guarantee that a process does not loop indefinitely, the KLAIM specification requires

that each process invocation in a process is guarded by a blocking action. The base cases
are described by the equations

eq noInfiniteLoops(nil) = true .

eq noInfiniteLoops(AP) = true .

eq noInfiniteLoops(in(T) @ L . SP) = true .

eq noInfiniteLoops(read(T) @ L . SP) = true .

which specify that the nil-process, an auxiliary process, and processes that are guarded by
the blocking in or read action do not loop indefinitely.

Otherwise, the equations

eq noInfiniteLoops(newloc(LV) . SP) = noInfiniteLoops(SP) .

eq noInfiniteLoops(out(T) @ L . SP) = noInfiniteLoops(SP) .

eq noInfiniteLoops(eval(SQ) @ L . SP) = noInfiniteLoops(SP) .

ceq noInfiniteLoops(P | Q) =

noInfiniteLoops(P) and noInfiniteLoops(Q)

if P =/= nil /\ Q =/= nil .

eq noInfiniteLoops(SP + SQ) =

noInfiniteLoops(SP) and noInfiniteLoops(SQ) .

eq noInfiniteLoops(SP { RHO }) = noInfiniteLoops(SP) .

specify the recursive evaluation of the operator for the process constructors.
Finally, the equation

eq noInfiniteLoops(A < PS, LS, ES >) = false .

specifies that a process invocation by itself is not guaranteed to be non-looping.
The KLAIM-SYNTAX module further specifies the high-level substitution operators

op _[_/_] : SyntacticProcess EvaluatedTuple EvaluatedTuple

-> SyntacticProcess [prec 20] .

op _[_/_] : SyntacticProcess ProcessSeq ProcessVarNameSeq

-> SyntacticProcess [prec 20] .

op _[_/_] : SyntacticProcess LocalitySeq LocalityVarNameSeq

-> SyntacticProcess [prec 20] .

op _[_/_] : SyntacticProcess ExpressionSeq VarNameSeq

-> SyntacticProcess [prec 20] .

for each type of substitution that occurs in the semantics of KLAIM. Substitutions in KLAIM
occur in two different places. First, evaluated tuples are substituted for evaluated tuples
when an in action consumes or a read action reads a tuple. Second, when a process invocation
is processed, sequences of process, locality, and expression variable names are substituted
with sequences of processes, localities, and expressions in the defining process.

36

4.3. M-KLAIM — a Maude-based specification of KLAIM

KLAIM-SEMANTICS

The KLAIM-SEMANTICS module specifies KLAIM’s SOS style rules using rewriting logic.

Specification of RKLAIM. Works by Braga and Meseguer [30], Verdejo et al. [110], and
Serbanuta et al. [101] have shown that SOS rules can naturally be mapped to rewrite rules
with different styles. Basically, inference rules of the form

P1 → Q1 . . . Pn → Qn

P0 → Q0

become conditional rewrite rules of the form

P0 → Q0 if P1 → Q1 ∧ . . . ∧ Pn → Qn

where the condition may include rewrite conditions. Some technical details may be added
to capture the one-step semantics of some SOS rules. In our approach defining the rewrite
semantics of KLAIM, RKLAIM, we combine the rules of the symbolic semantics and the
reduction relation. Transitions in RKLAIM only happen at the net level. The structural
rules for action prefixes are not reflected by the rewriting semantics. Inference rules of the
reduction relation with premises that require a process to perform a transition according to
the symbolic semantics are mapped to inference rules with no such condition. The symbolic
semantics transition for the action prefix is built-in into the rewrite rule. Using this approach,
the conditional rewrite rules obtained by the transformation of the reduction relation’s
rules include no rewrite conditions as the remaining premises of these inference rules are
expressed by equational and matching conditions. One advantage of this approach is that
the specification can be executed with higher performance, because equational and matching
conditions are evaluated faster than rewrite conditions and therefore avoid expensive non-
deterministic rewrite searches in conditions.

The variables

vars COUNT COUNT1 COUNT2 : Nat .

vars RHO RHO1 RHO2 : AllocationEnvironment .

vars P PP Q : Process .

vars SP SQ : SyntacticProcess .

var L : Locality .

vars S S1 S2 NEWSITE : Site .

vars ET1 ET2 : EvaluatedTuple .

var PS : ProcessSeq .

var LS : LocalitySeq .

var ES : ExpressionSeq .

var PVNS : ProcessVarNameSeq .

var LVNS : LocalityVarNameSeq .

var VNS : VarNameSeq .

var E : Expression .

var T : Tuple .

var A ID : Qid .

var C : Context .

var PID : ProcessId .

are used by the specification of the semantic rewrite rules in Maude.

37

4. Formal Languages for the Design and Analysis of Cloud-based Architectures

Rules for the out action. The rules

crl [out-self] :

(S {COUNT} :: {RHO} (out(T) @ L) . SP | PP)

=>

(S {COUNT} :: {RHO} SP | PP | out(T[| T |]RHO))

if S := RHO(L) .

and

crl [out-remote] :

(S1 {COUNT1} :: {RHO1} (out(T) @ L) . SP | PP)

|| (S2 {COUNT2} :: {RHO2} P)

=> (S1 {COUNT1} :: {RHO1} SP | PP)

|| (S2 {COUNT2} :: {RHO2} P | out(T[| T |]RHO1))

if S2 := RHO1(L) .

correspond to rule (1) and rule (2) of KLAIM’s reduction relation (Figure A.1). out-self

states that if the process of the node at site S contains a process which can perform an out
action and the action’s locality evaluates to S, a new auxiliary process is added to the process
at that node. Otherwise, if the action’s locality evaluates to a different site than the node’s
site and the remote node at that site exists, the rule out-remote adds the auxiliary process
to the process at that node. In both rules, the process PP reflects the possible existence of a
parallel process to the process that is prefixed with the out action.

Rules for the eval action. The rules

crl [eval-self] :

(S {COUNT} :: {RHO} (eval(SQ) @ L) . SP | PP)

=>

(S {COUNT} :: {RHO} SP | PP | SQ)

if S := RHO(L) .

and

crl [eval-remote] :

(S1 {COUNT1} :: {RHO1} (eval(SQ) @ L) . SP | PP)

|| (S2 {COUNT2} :: {RHO2} P)

=>

(S1 {COUNT1} :: {RHO1} SP | PP)

|| (S2 {COUNT2} :: {RHO2} P | SQ)

if S2 := RHO1(L) .

correspond to rules (3) and (4) of KLAIM’s reduction relation (Figure A.1).

Rules for the in action. The rules

crl [in-self] :

(S {COUNT} :: {RHO} (in(T) @ L) . SP | out(ET1) | PP)

=>

(S {COUNT} :: {RHO} (SP [ET1 / ET2]) | PP)

if ET2 := T[| T |]RHO /\ S := RHO(L) /\ match(ET1, ET2) .

and

crl [in-remote] :

(S1 {COUNT1} :: {RHO1} (in(T) @ L) . SP | PP)

|| (S2 {COUNT2} :: {RHO2} P | out(ET1))

38

4.3. M-KLAIM — a Maude-based specification of KLAIM

=>

(S1 {COUNT1} :: {RHO1} (SP [ET1 / ET2]) | PP)

|| (S2 {COUNT2} :: {RHO2} P)

if ET2 := T[| T |]RHO1 /\ S2 := RHO1(L) /\ match(ET1, ET2) .

correspond to rules (5) and (6) of KLAIM’s reduction relation (Figure A.1).

Rules for the read action. The rules

crl [read-self] :

(S {COUNT} :: {RHO} (read(T) @ L) . SP | out(ET1) | PP)

=> (S {COUNT} :: {RHO} (SP [ET1 / ET2]) | out(ET1) | PP)

if ET2 := T[| T |]RHO /\ S := RHO(L) /\ match(ET1, ET2) .

and

crl [read-remote] :

(S1 {COUNT1} :: {RHO1} (read(T) @ L) . SP | PP)

|| (S2 {COUNT2} :: {RHO2} P | out(ET1))

=>

(S1 {COUNT1} :: {RHO1} (SP[ET1 / ET2]) | PP)

|| (S2 {COUNT2} :: {RHO2} P | out(ET1))

if ET2 := T[| T |]RHO1 /\ S2 := RHO1(L) /\ match(ET1, ET2) .

correspond to rules (7) and (8) of KLAIM’s reduction relation (Figure A.1).

Rules for the newloc action. The rule

crl [newloc] :

(site ID {COUNT} :: {RHO} (newloc(LVN)) . SP | PP)

=>

(site ID {s(COUNT)} :: {RHO} (SP [NEWSITE / LVN]) | PP)

|| (NEWSITE {0} :: {[NEWSITE / self] * RHO} nil)

if NEWSITE := site (qid(string(ID) + "." + string(COUNT, 10))) .

corresponds to rule (10) of KLAIM’s reduction relation (Figure A.1). It creates a new node
with at a fresh site. The fresh site consists of the identifier, i.e., the site of the node that
evaluates the newloc action, followed by a dot and the current count of children. The rule
furhter increases the count of children by one.

Other rules. Rules (9), (11), and (12) of KLAIM’s reduction relation (Figure A.1) have
no corresponding rules in RKLAIM. Rule (9), which specifies that any subprocess of a node’s
process can perform a step, is captured by the parallel process PP in the rewrite rules. Rule
(11), which only allows legal nets to perform a transition, is captured by the conditional
membership for legal nets. Finally, rule (12), which specifies how the reduction behaves
with respect to structural congruence, is captured by the signature of nets.

In addition to the mapping of the rules of the reduction relation, RKLAIM defines the rule

crl [process-invocation] :

(S {COUNT} :: {RHO} (A < PS, LS, ES >) | PP)

=>

(S {COUNT} :: {RHO}

def(PID, context)[PS / PVNS][LS / LVNS][ES / VNS] | PP)

if (A definedIn context)

/\ A(PVNS, LVNS, VNS) := processId(A, context)

/\ PID := A(PVNS, LVNS, VNS) .

39

4. Formal Languages for the Design and Analysis of Cloud-based Architectures

to describe the evaluation of process invocations and the rule

rl [process-choice] : SP + SQ => SP .

to describe the semantics of process choices. Only one rule is needed to define the semantics
of the process choice operator because of the operator’s associativity and commutativity.

4.4. Application of the CINNI calculus

Many formal languages, including KLAIM, use the concept of variables to range over essen-
tial entities of the language. More specifically, KLAIM uses variables to range over processes,
localities, or expressions. Variables can appear in tuples, sequences, or processes. The se-
mantic rules of KLAIM use substitutions of such variables for the evaluation of in and read
operations, for the instantiation of process identifiers by a process invocation, and to bind
a fresh site to the locality variable of a newloc operation.

CINNI is a generic calculus of explicit substitutions that contributes a first-order repre-
sentation of terms which takes variable bindings into account and captures free substitutions
[99]. For a given language L and its defining syntax, the instantiation of CINNI for L is
denoted by CINNIL. Stehr tries to stay as close as possible to the standard name notation
while at the same time including the canonical representation of the de Bruijn notation [37]
as the special case, in which a single name is used. CINNI uses the Berklin notation [23, 24]
that unifies indexed and named notations. In the Berklin notation, each variable name X is
annotated with an index i ∈ N which represents the position of the binder in the term that
binds Xi. The index i of Xi thereby indicates that the binder that binds the variable X is
the ith binder to the left of the variable in the term.

Example 4.5: Berklin notation
The following example illustrates the Berklin notation. Variable X0 is bound by the second
binder, while variable X1 is bound by the first binder in the term.

∀X. ∀X. f(X0) ∧ f(X1)

CINNI extends a given language with explicit substitutions as shown in equations B.1,
B.2 and B.3. The simple substitution [X := M] replaces variable X0 with value M and
reduces the index of any other equally named variable Xn+1 to Xn. The shift substitution
for variable X, ↑X , increases the index of variables with the same name X. The lifted
substitution ⇑X (S) is defined in the equations B.4, B.5, and B.6. It decreases the index of
variables with the name X, performs the substitution S, and finally lifts the variable.

[X := M] (simple substitution) (4.1)

↑X (shift substitution) (4.2)

⇑X (S) (lifted subsitution) (4.3)

⇑X (S)X0 = X0 (4.4)

⇑X (S)Xn+1 =↑X (SXn) (4.5)

⇑X (S)Yn =↑X (SYn) if X 6= Y (4.6)

40

4.4. Application of the CINNI calculus

For each syntactical constructor f of the language L, CINNI adds a syntax-specific equation
which automatically shifts the bound variables in each argument of the constructor. Let
ji,1, . . . ji,mi

be the arguments that are bound by f in argument i, then the syntax specific
equation is defined by:

S f(P1, . . . , Pn) = f(⇑Pj1,1
(. . . ⇑Pj1,m1

(S))P1, . . . ,⇑Pjn,1
(. . . ⇑Pjn,mn

(S))Pn)

Example 4.6: Application of CINNI on SimpleKLAIM

As an example of how the CINNI calculus can be applied to a formal language, we introduce
a subset of the KLAIM coordination language, SimpleKLAIM . Let P be a process, E an
expression and X a name for an expression variable. Expressions are natural numbers,
expression variables, or the sum of two expression using the + operator.

E ::= n ∈ N

|Xi∈N

|E1 + E2

Processes are either the null process nil or the parallel composition of two processes.
Additionally, a process can be prefixed by the out or in actions. The process in(X).P ′

binds the variable name X in P ′.

P ::= nil

| P1 | P2

| out(E).P ′

| in(X).P ′

Processes may communicate according to the following rule:

out(V).Q | in(X).P → Q | [X := V]P

CINNISimpleKLAIM adds the operations and equations for explicit substitutions to SimpleKLAIM .
Additionally, a syntax specific equation is added for each constructor.

S(n) = n, n ∈ N (4.7)

S(nil) = nil (4.8)

S(E1 + E2) = S(E1) + S(E2) (4.9)

S(P1 | P2) = S(P1) | S(P2) (4.10)

S(out(E).P ′) = out(SE).(SP) (4.11)

S(in(X).P ′) = in(X)(⇑X (S)P ′) (4.12)

Rules 4.7 and 4.8 eliminate the substitution if it is applied to a natural number or the nil-
process. The rules 4.9, 4.10, and 4.11 pass substitutions down to subterms. If a substitution
is applied to a process P ′ with the in action prefix in(X).P ′, rule 4.12 enforces that the
substitution is lifted to ensure that the substitution is applied to the correct variables.

To show how a reduction in CINNISimpleKLAIM is processed, let us consider the following
example:

in(X).in(X).out(X0 +X1).nil | out(3).out(4).nil

41

4. Formal Languages for the Design and Analysis of Cloud-based Architectures

→ [X := 3]in(X).out(X0 +X1).nil | out(4).nil (4.13)

→ in(X).(⇑X ([X := 3])out(X0 +X1).nil) | out(4).nil (4.14)

→ in(X).(out(⇑X ([X := 3])(X0 +X1)).(⇑X ([X := 3])nil))

| out(4).nil

→ in(X).(out(⇑X ([X := 3])(X0)+ ⇑X ([X := 3])(X1)).nil)

| out(4).nil

→ in(X).(out(X0+ ↑X ([X := 3]X0)).nil) | out(4).nil (4.15)

→ in(X).(out(X0 + 3).nil) | out(4).nil

→ [X := 4](out(X0 + 3).nil) | nil

→ (out([X := 4](X0 + 3)).([X := 4](nil))) | nil

→ (out(([X := 4]X0) + ([X := 4]3)).nil) | nil

→ out(4 + 3).nil | nil

Step 4.13 of the reduction applies the substitution [X := 3] to the process term in(X).out(X0+
X1).nil, where the variable X0 is bound to the binder in(X). The substitution does not
change bound variables and is only applied to the variable X1. In order to apply the sub-
stitution correctly, is is lifted as shown in reduction step 4.14. Finally, step 4.15 applies the
lifted substitution which replaces the correct variable, i.e., X1, with the value 3.

4.4.1. Implementation of CINNIKLAIM

KLAIM uses variables to range over processes, localities and expressions. In order to be
consistent in the notation and to differentiate between the three different types of variables,
we introduce the three constructors

op x_ : Qid -> VarName [ctor prec 15] .

op u_ : Qid -> LocalityVarName [ctor prec 15] .

op X_ : Qid -> ProcessVarName [ctor prec 15] .

for the variable names.
As required by CINNI, we extend names for variables with an index n ∈ N. The operators

op _{_} : ProcessVarName Nat -> ProcessVar [ctor prec 15] .

op _{_} : VarName Nat -> Var [ctor prec 15] .

op _{_} : LocalityVarName Nat -> LocalityVar [ctor prec 15] .

define the constructors for variables that range over processes (ProcessVar), variables that
range over expressions (Var), and variables that range over localities (LocalityVar).

Additionally, we add a sort for each type of substitution:

sorts ProcessSubst ExpressionSubst LocalitySubst .

CINNI requires the basic substitution operators to be defined for each of the three substi-
tution types. The operators

op [_:=_] : ProcessVarName SyntacticProcess -> ProcessSubst .

op [shift_] : ProcessVarName -> ProcessSubst .

op [lift__] : ProcessVarName ProcessSubst -> ProcessSubst .

op __ : ProcessSubst SyntacticProcess -> SyntacticProcess .

42

4.4. Application of the CINNI calculus

op [_:=_] : VarName Expression -> ExpressionSubst .

op [shift_] : VarName -> ExpressionSubst .

op [lift__] : VarName ExpressionSubst -> ExpressionSubst .

op __ : ExpressionSubst Expression -> Expression .

op [_:=_] : LocalityVarName Locality -> LocalitySubst .

op [shift_] : LocalityVarName -> LocalitySubst .

op [lift__] : LocalityVarName LocalitySubst -> LocalitySubst .

op __ : LocalitySubst Locality -> Locality .

define the constructors for the three types of substitution and an operation that allows the
substitution to be concatenated with the corresponding type.

The syntax for localities and expressions does not provide a binding construct for vari-
ables. However they may be bound at the processes level, e.g., by a newloc(u) action.
Consequently, we have to handle substitutions of locality and expression variables as well as
substitutions of process variables at the process level. Keeping this restriction in mind, the
syntax-specific equations for expression and locality variables are defined in a straightforward
manner.

In the following description of substitution operators and syntax-specific equations, the
variables

vars Y Z : Qid .

var EST : ExpressionSubst .

var PST : ProcessSubst .

var SP : SyntacticProcess .

vars E E1 E2 : Expression .

var V : Val .

var N : Nat .

are used.
The equations

eq [expr-subst0] : ([x Y := E]) x Y{0} = E .

eq [expr-subst1] : ([x Y := E]) x Y{s(N)} = x Y{N} .

ceq [expr-subst2] : ([x Y := E] x Z{N}) = x Z{N} if Z =/= Y .

eq [expr-subst3] : EST V = V .

eq [expr-subst-shift0] : ([shift x Y] x Y{N}) = x Y{s(N)} .

ceq [expr-subst-shift1] : ([shift x Y] x Z{N}) = x Z{N} if Z =/= Y .

eq [expr-subst-lift-base] : ([lift (x Y) EST] x Y{0}) = x Y{0} .

eq [expr-subst-lift-rec0] : ([lift (x Y) EST] x Y{s(N)})

= [shift x Y] (EST x Y{N}) .

ceq [expr-subst-lift-rec1] : ([lift (x Y) EST] x Z{N})

= [shift x Y] (EST x Z{N}) if Z =/= Y .

eq [expr-subst-addition] : EST (E1 +e E2) = (EST E1) +e (EST E2) .

define the behavior of the CINNI substitution operator and the syntax-specific equations
for expressions. The corresponding equations for locality variables are defined similarly
and are not shown here. Equation expr-subst3 handles substitutions that are applied to
values. Equation expr-subst-addition passes the substitution down to the subterms. The
other equations depict the implementation of the CINNI behavior for substitutions.

In order to handle substitutions at the process level, we introduce the sort Substitution

as a supersort of the sorts for the three types of substitution.

43

4. Formal Languages for the Design and Analysis of Cloud-based Architectures

sort Substitution .

subsort ProcessSubst ExpressionSubst LocalitySubst < Substitution .

In KLAIM, substitutions occur at three different occasions. First, an evaluated tuple
in a process may be replaced by another evaluated tuple. This happens when a process
in(T)@L.P or read(T)@L.P synchronizes with a corresponding auxiliary process out(ET)
at the node located at locality L. Then, the evaluation of the tuple T , T [[T]], in P is
replaced by the evaluated tuple ET . Syntactically, the substitution is denoted by process,
expression, and locality variables in the defining process, which are substituted for the
processes, expressions, and localities in the corresponding sequences of the invocation. Last,
the evaluation of a process P that is prefixed with a newloc(u) action substitutes the locality
variable u in P with the fresh site generated by the action prefix.

In summary, at the highest level, substitutions in KLAIM are applied to processes and
to sequences of processes, localities, or expressions. Additionally, tuples that may occur in
read, in, out or eval actions have to be taken into account for the substitution. To correctly
apply a substitution to a term, it has to be passed down to subterms that are likely to be
affected by the substitution. The operators

op __ : Tuple Substitution -> Tuple .

op __ : SyntacticProcess Substitution -> SyntacticProcess .

op _[_] : ProcessSeq Substitution -> ProcessSeq .

op _[_] : LocalitySeq Substitution -> LocalitySeq .

op _[_] : ExpressionSeq Substitution -> ExpressionSeq .

describe the application of substitutions to the different concepts in KLAIM.
For the substitution for process variables we need to specify the following syntax-specific

equations:

eq [process-subst0] : [X Y := SP] X Y{ 0 } = SP .

eq [process-subst1] : [X Y := SP] X Y{s(N)} = X Y{N} .

ceq [process-subst2] : [X Y := SP] X Z{N} = X Z{N} if Z =/= Y .

eq [process-subst-shift0] : ([shift X Y] X Y{N}) = X Y{s(N)} .

ceq [process-subst-shift1] : ([shift X Y] X Z{N}) = X Z{N} if Z =/= Y .

eq [process-subst-lift-base] : ([lift (X Y) PST] X Y{0}) = X Y{0} .

eq [process-subst-lift-rec0] : ([lift (X Y) PST] X Y{s(N)})

= [shift X Y] (PST X Y{N}) .

ceq [process-subst-lift-rec1] : ([lift (X Y) PST] X Z{N})

= [shift X Y] (PST X Z{N}) if Z =/= Y .

eq (PST SP) = SP [owise] .

These are all such equations because process substitutions are only applied to process terms
that cannot be decomposed any further. The operations for the sort Substitution take care
of of all types of substitutions in a unified way.

Example 4.7: Substitution for an expression
Let us consider the the following process:

(in(!x)@self.in(!x)@self.out(x0 + x1)@self.nil) | out(7)

44

4.4. Application of the CINNI calculus

The in(!x) actions bind the variables x in the subsequent processes. If a first synchro-
nization rule is applied, the process evolves to

in(!x)@self.out(x0 + x1)@self.nil

and the substitution [7/x] is applied to the resulting process.
In terms of our Maude specification, the substitution [x ’x := [7]] that is of the sort

ExpressionSubst < Substitution is appended to the process and yields the following term:

(in(!x ’x)@self.out(x ’x {0} +e x ’x {1})@self.nil)) [x ’x := [7]]

The CINNI rules lift the substitution because of the in action:

(in(!x ’x)@self.out((x ’x {0} +e x ’x {1}) (lift x’ x ([x ’x := [7]])))@self.nil)

Finally, the substitution is passed down to the expression inside the out action and the
substitution for terms of the sort ExpressionSubst is applied to the term:

(in(!x ’x)@self.out(x ’x {0} +e x [7])@self.nil)

Top level substitutions

In the following description of the behavior of top level substitutions, the variables

var A Y : Qid .

var PS : ProcessSeq .

var LS : LocalitySeq .

var ES : ExpressionSeq .

var LST : LocalitySubst .

var EST : ExpressionSubst .

var PST : ProcessSubst .

var S : Substitution .

vars SP SQ : SyntacticProcess .

var T : Tuple .

var TE : TupleElt .

var L : Locality .

var RHO : AllocationEnvironment .

var PV : ProcessVar .

var LV : LocalityVar .

are used.
The equations

eq [klaim-subst-processinvocation-locality] :

(A < PS, LS, ES >) LST = A < (PS [LST]), (LS [LST]), ES > .

eq [klaim-subst-processinvocation-expression] :

(A < PS, LS, ES >) EST = A < (PS [EST]), LS, (ES [EST]) > .

eq [klaim-subst-processinvocation-process] :

(A < PS, LS, ES >) PST = A < (PS [PST]), LS, ES > .

eq [klaim-subst-out-locality] :

((out(T) @ L). SP) LST = (out(T LST) @ (L LST)) . (SP LST) .

eq [klaim-subst-out-owise] :

((out(T) @ L). SP) S = (out(T S) @ L) . (SP S) [owise] .

eq [klaim-subst-eval-locality] :

((eval(SQ) @ L). SP) LST = (eval(SQ LST) @ (L LST)) . (SP LST) .

45

4. Formal Languages for the Design and Analysis of Cloud-based Architectures

eq [klaim-subst-eval-owise] :

((eval(SQ) @ L). SP) S = (eval(SQ S) @ L) . (SP S) [owise] .

eq [choice-composition-substitution] : (SP + SQ) S = (SP S) + (SQ S) .

ceq [parallel-composition-substitution] : (SP | SQ) S = (SP S) | (SQ S)

if SP =/= nil /\ SQ =/= nil .

eq [closure-substitution-processvar] : (PV {RHO}) S = (PV S) {RHO} .

show the handling of substitutions for the process invocation, for the out and eval action
prefixes, for the choice and the parallel composition of two processes and for the process
closure. The equations for the process invocation apply the substitution to the affected
sequences. The equations for the out and eval actions differentiate between locality substi-
tutions and other types of substitutions because substitutions of locality variables need also
be applied to the location postfix of an action. The equations for the choice and parallel
composition pass the substitution down to the subprocesses. Finally, if a substitution is
applied to a closed process variable, the substitution is directly applied to the variable. This
is an exception to the normal handling of closures.

The equations

eq [klaim-subst-in-locality] :

((in(T) @ L). SP) LST

= (in(T LST) @ (L LST)) . (SP liftedSubstitution(T, LST)) .

eq [klaim-subst-in-owise] :

((in(T) @ L). SP) S = (in(T S) @ L)

. (SP liftedSubstitution(T, S)) [owise] .

eq [klaim-subst-read-locality] :

((read(T) @ L). SP) LST

= (read(T LST) @ (L LST)) . (SP liftedSubstitution(T, LST)) .

eq [klaim-subst-read-owise] :

((read(T) @ L). SP) S

= (read(T S) @ L) . (SP liftedSubstitution(T, S)) [owise] .

for the in, read and newloc actions differ substantially from the equations for the other
actions as they can bind variables in the subsequent process.

The equation

eq [klaim-subst-newloc-locality] :

(newloc(u Y). SP) LST = newloc(u Y) . (SP [lift (u Y) LST]) .

eq [klaim-subst-newloc-owise] :

(newloc(u Y) . SP) S = newloc(u Y) . (SP S) [owise] .

for the newloc action lifts the substitution if it is of sort LocalitySubst.
The operator

op liftedSubstitution : Tuple Substitution -> Substitution .

which takes a tuple and a substitution as arguments, computes the correct substitution by
lifting the substitution if necessary. The operation recursively decomposes tuples, taking
tuple elements, i.e., tuples that cannot be decomposed any further, from the front of the
tuple sequence and computes the resulting substitution. The name of the variable is lifted
if the substitution is applied to a tuple that binds the corresponding type of variable.

eq [liftedSubstitution-base0] : liftedSubstitution(!(X Y), PST)

= [lift (X Y) PST] .

46

4.5. OO-KLAIM — an extension of M-KLAIM for object-oriented specifications

eq [liftedSubstitution-base1] : liftedSubstitution(!(u Y), LST)

= [lift (u Y) LST] .

eq [liftedSubstitution-base2] : liftedSubstitution(!(x Y), EST)

= [lift (x Y) EST] .

eq [liftedSubstitution-base-owise] : liftedSubstitution(TE, S)

= S [owise] .

eq [liftedSubstitution-other-tuple-rec] :

liftedSubstitution((TE, T), S)

= liftedSubstitution(TE, liftedSubstitution(T, S)) .

Example 4.8: The liftedSubstitution operation
Let P be process in(!X, !x, !u, nil, [7]).Q, and assume that the substitution [X := nil] is
applied to P . As the in action already binds X0 in Q, the substitution has to be lifted. The
reduction

liftedSubstitution(!X ’X, !x ’X, !u ’U, nil, [7], [X ’X:= nil])

liftedSubstitution(!X ’X,

liftedSubstitution(!x ’X, !u ’U, nil, [7], [X ’X := nil]))

...

liftedSubstitution(!X ’X, [X ’X := nil])

[lift (X ’X) [X ’X := nil]] .

shows the application of the liftedSubstitution operation to the example tuple. Besides the
first tuple element !X ’X, all other tuple elements do not alter the substitution.

Finally, the equations

eq [klaim-subst-base-nil] : nil S = nil .

eq [klaim-subst-base-processvar] : PV PST = PST PV .

eq [klaim-subst-base-processvar-owise] : PV S = PV [owise] .

eq [klaim-subst-base-localityvar] : LV LST = LST LV .

eq [klaim-subst-base-localityvar-owise] : L S = L [owise] .

eq [klaim-subst-base-experssionvar] : E EST = EST E .

eq [klaim-subst-base-expressionvar-owise] : E S = E [owise] .

ceq [klaim-subst-tuple-owise] : TE S = TE

if not(TE :: SyntacticProcess) .

specify the base cases of substitutions for tuples. As shown in equation [klaim-subst-base-nil

], any substitution applied to the null process yields the null process. The equations in lines
2 – 7 prepend the substitution to the term if it is of the right type and otherwise discard
it. Finally, equation [klaim-subst-tuple-owise] says that the substitution is discarded, if it is
not applied to a SyntacticProcess.

4.5. OO-KLAIM — an extension of M-KLAIM for
object-oriented specifications

Maude supports modeling of distributed object-based systems in which objects communicate
via message passing. In the following, we extend M-KLAIM by adding the object-oriented
paradigm to the specification. This extensions allows for a more natural specification of
cloud-based architectures.

47

4. Formal Languages for the Design and Analysis of Cloud-based Architectures

4.5.1. Object-based programming in Maude

The predefined module CONFIGURATION supports modelling of object-based systems in
Core Maude. Terms of the sort Configuration consist of objects and messages and can be
thought of as a soup. More specifically, a configuration is a multiset of objects (defined
by the sort Object) and messages (defined by the sort Msg) that describe a possible system
state. To address objects, an object’s first argument is usually an object identifier that is
unique in the system. Object identifiers are terms of the sort Oid. Messages usually contain
such an identifier to address specific objects. An object’s state is described by terms of
the sort Attribute. These attributes are usually, as a set of attributes (defined by the sort
AttributeSet), part of an object.

In OO-KLAIM, we decided to introduce a slightly modified syntax for objects and con-
figurations. The syntax of OO-KLAIM is described in the following Section and resembles
the original syntax of KLAIM. Nonetheless, the definition is based on the module CON-
FIGURATION. Except for the modules KLAIM-SYNTAX and KLAIM-SEMANTICS, the
specification of OO-KLAIM shares all modules with the M-KLAIM specifications defined in
Section 4.3.

4.5.2. OO-KLAIM syntax

In OO-KLAIM, KLAIM nodes are objects which are identified by their site. To better
demonstrate that these objects describe the entities of a distributed system, a new con-
structor for more specific sites of sort IPSite is introduced. An address which represents the
physical host of a KLAIM node is specified by a term of sort Address. The address itself is
made up of an IP address (a term of sort String) and a port (a term of sort Nat).

sort Address .

op _:_ : String Nat -> Address [ctor prec 5] .

Finally, a term of sort IPSite is constructed by an address and an identifying term of sort
Qid. This additional term allows for the specification of systems where more than one
KLAIM node is addressed by the same IP address and port (e.g. this way a multi-threaded
application can be modeled).

sort IPSite .

subsorts IPSite < Oid Site .

op _#_ : Address Qid -> IPSite [ctor prec 10] .

The constructor for OO-KLAIM nodes slightly differs from the constructor for nodes in
M-KLAIM. As aforementioned, a more specific site which includes an IP address and a port
is used as a node’s site. Additionally, an OO-KLAIM node is of sort Object.

op (_{_}::{_}_) : IPSite Nat AllocationEnvironment Process

-> Object [ctor object] .

In OO-KLAIM, a KLAIM net corresponds to a configuration. To better reflect the syntax
of the original KLAIM specification, the concatenation operator for configurations __ is
renamed to _||_. It is of note that the conditional membership which determines if a
KLAIM net is a valid net is omitted in the object-oriented specification. Instead, the module
INITIALCHECK, which is not shown here, provides an operator legalNet which determines
if an object-configuration forms a valid KLAIM net.

48

4.5. OO-KLAIM — an extension of M-KLAIM for object-oriented specifications

The OO-KLAIM specification uses messages for the communication between nodes. These
messages are syntactically reflected by terms of the sort Msg, which are made up of an object
identifier which represents the addressed object and message contents of sort MsgContents. In
OO-KLAIM, the configuration that forms a KLAIM net does not only contain KLAIM nodes
but also the messages that nodes use to communicate with each other. This configuration
can be thought of as a soup of objects and messages.

sort MsgContents .

op msg(_,_) : Oid MsgContents -> Msg [ctor message] .

Message contents exist for the out, eval, read, and in actions respectively. The message
contents to request a tuple using a read or in action include the evaluated tuple to match
with and an object identifier to send to response to. The response contains a matched tuple
in addition to the object identifier the response is from.

op remote-out(_) : EvaluatedTuple -> MsgContents [ctor] .

op remote-eval(_) : SyntacticProcess -> MsgContents [ctor] .

op readRequest(_,_) : Oid EvaluatedTuple -> MsgContents [ctor] .

op readResponse(_,_) : Oid EvaluatedTuple -> MsgContents [ctor] .

op inRequest (_,_) : Oid EvaluatedTuple -> MsgContents [ctor] .

op inResponse (_,_) : Oid EvaluatedTuple -> MsgContents [ctor] .

At the process level, the OO-KLAIM specification adds two auxiliary actions, blockRead

and blockIn. These actions are placeholders to block the continuation of a process that is
waiting for a response from read or in actions that address remote KLAIM nodes. Both
auxiliary actions carry the tuple the process is waiting for, and an object identifier, which
represents the object the response is expected to arrive from.

op blockRead : Tuple Oid -> Action [ctor] .

op blockIn : Tuple Oid -> Action [ctor] .

4.5.3. OO-KLAIM semantics

OO-KLAIM’s semantics differs from M-KLAIM’s semantics in the rules where two nodes are
involved and in the rule to create a new node with a fresh site. In the following description
of the rules of the OO-KLAIM semantics, the variables

var COUNT PORT : Nat .

var RHO : AllocationEnvironment .

var PP : Process .

vars SP SQ : SyntacticProcess .

var L : Locality .

vars S S1 S2 NS : IPSite .

vars ET ET1 ET2 : EvaluatedTuple .

var T : Tuple .

var ID : Qid .

var IP : String .

are used.
The semantic rule for an out action which addresses a remote node consumes the out

action and puts a new message into the configuration. The message contains the receiving
node’s site and the tuple of the out action.

crl [out-remote-produce] :

49

4. Formal Languages for the Design and Analysis of Cloud-based Architectures

(S1 {COUNT}::{RHO} (out(T) @ L) . SP | PP)

=>

(S1 {COUNT}::{RHO} SP | PP) || msg(S2, remote-out(T[| T |]RHO))

if S2 := RHO(L) /\ S2 =/= S1 .

A node consumes a message that is addressed to it and has remote-out message contents
in it by putting the evaluated tuple that comes with the message in its tuple space.

rl [out-remote-consume] :

(S {COUNT}::{RHO} PP) || msg(S, remote-out(ET))

=>

(S {COUNT}::{RHO} PP | out(ET)) .

Similarly to the rule for a remote out action, the semantic rule for an eval action consumes
the action and puts a new message with the syntactic process that should be evaluated and
the remote node’s site into the configuration.

crl [eval-remote-produce] :

(S1 {COUNT}::{RHO} (eval(SQ) @ L) . SP | PP)

=>

(S1 {COUNT}::{RHO} SP | PP)

|| msg(S2, remote-eval(SQ))

if S2 := RHO(L) /\ S2 =/= S1 .

A node consumes a message that is addressed to it and has remote-eval message contents
in it by appending the syntactic process that comes with the message to its process.

rl [eval-remote-consume] :

(S {COUNT}::{RHO} PP)

|| msg(S, remote-eval(SP))

=>

(S {COUNT}::{RHO} PP | SP) .

It is of note that the process behavior of M-KLAIM and OO-KLAIM processes is slightly
different. In M-KLAIM, if a remote out or eval action address a node which is not in the
KLAIM net, the process that is prefixed by this action cannot proceed. In OO-KLAIM,
however, the definition of the rules for the remote out and eval actions allow for a process
to proceed even in the case when the action prefixing the process addresses a node that
does not exist in the net. This semantic variation is not due to technical limitations, since
an object-oriented specification that exactly captures the original semantics could be given.
However, we decided to introduce this semantic variation from the original specification to
achieve greater flexibility in regard to the design of distributed systems.

KLAIM’s in and read actions are blocking actions, i.e., a process which is prefixed by
such an action can only proceed if a tuple that matches the tuple of the in or read action
is found. In the following we discuss OO-KLAIM’s semantics rules for a remote in action.
The rules for the remote read action are similar to the rules for the remote in action and
are omitted here. A remote in action is consumed by a KLAIM node by putting a request
message which addresses the remote node into the configuration. The message contains the
tuple of the in action and the site of the node that processed the in action. To simulate
the blocking behavior, the node’s process is prefixed by a blockIn action that contains the
node’s site the message is sent to and the tuple of the in action.

crl [in-remote-request] :

(S1 {COUNT}::{RHO} (in(T) @ L) . SP | PP)

50

4.6. D-KLAIM — an extension of OO-KLAIM for distributed specifications

=>

(S1 {COUNT}::{RHO} blockIn(ET, S2) . SP | PP)

|| msg(S2, inRequest(S1, ET))

if ET := T[| T |]RHO /\ S2 := RHO(L) /\ S2 =/= S1 .

A node consumes a message that is addressed to it and contains an inRequest if a tuple
that matches the tuple of the message is present in its tuple space by putting a response
message that contains the found tuple into the configuration. The message also contains
the node’s site that processed the message and is addressed to the node where the request
came from.

crl [in-remote-response] :

(S2 {COUNT}::{RHO} SP | PP | out(ET1))

|| msg(S2, inRequest(S1, ET2))

=>

(S2 {COUNT}::{RHO} SP | PP)

|| msg(S1, inResponse(S2, ET1))

if match(ET1, ET2) .

A node consumes a message that is addressed to it and contains an inResponse by matching
the information of the sender and the tuple that come with the response with the information
of a blockIn action in its process. If the tuples match, the received tuple is substituted for
the tuple of the blockIn action in the process that the blockIn action prefixes. It is necessary
for the receiving node to match the tuples, because a node can send two requests with
non-matching tuples to the same remote node.

crl [in-remote-consume] :

(S1 {COUNT}::{RHO} blockIn(ET1, S2) . SP | PP)

|| msg(S1, inResponse(S2, ET2))

=>

(S1 {COUNT}::{RHO} SP [ET2 / ET1] | PP)

if match(ET1, ET2) .

The rule to process a newloc action in OO-KLAIM constructs a fresh site using the
parent’s IP address, port, and the identifier attached with the parent’s counter of children. A
new node at the constructed fresh site is then added to the configuration. The node encodes
the information about its parent in its site. Other than that, the implicitly introduced
hierarchy plays no role in the definition of the semantics of OO-KLAIM.

crl [newloc] :

(IP : PORT # ID {COUNT}::{RHO} newloc(LVN) . SP | PP)

=>

(IP : PORT # ID {s(COUNT)}::{RHO} (SP [NS / LVN]) | PP)

|| (NS {0}::{[NS / self] * RHO} nil)

if NS := IP : PORT # (qid(string(ID) + "." + string(COUNT, 10))) .

4.6. D-KLAIM — an extension of OO-KLAIM for distributed

specifications

D-KLAIM is an extension of OO-KLAIM that allows for specifications to be executed in a
distributed environment. In essence, the D-KLAIM extension allows for multiple instances
of Maude to execute specifications based on OO-KLAIM. The OO-KLAIM specification

51

4. Formal Languages for the Design and Analysis of Cloud-based Architectures

instances communicate with each other through sockets which are handled by objects intro-
duced in D-KLAIM. We use Maude’s support for rewriting with external objects and the
predefined implementation of sockets. In the following, we give an introduction to rewriting
with external objects in Maude and show in more detail how D-KLAIM extends the OO-
KLAIM specification. To simulate the behavior of a distributed system that communicates
using sockets in a single Maude instance, we developed a socket abstraction for D-KLAIM
that allows for such systems to be specified and executed. The socket abstraction further
allows the model checking of such systems. Finally, we give an example of a Cloud-based
architecture based on D-KLAIM.

4.6.1. Rewriting with external objects in Maude

For a configuration to communicate with external objects in Maude, the configuration must
contain a so-called portal configuration. The default portal is part of the predefined module
CONFIGURATION.

sort Portal .

subsort Portal < Configuration .

op <> : -> Portal [ctor] .

An example for external objects are sockets. Currently, Maude supports IPv4 TCP sock-
ets. The predefined module SOCKET of the Maude distribution includes the definition of
messages to create, close, and interact with sockets. The messages are consumed by the
portal configuration which internally then handles the socket communication. Additionally,
an object identifier for the external object

op socketManager : -> Oid [special (...)]

is defined. The socketManager object is a factory for socket objects. The operator

op socket : Nat -> Oid [ctor] .

provides object identifiers for the sockets.

4.6.2. D-KLAIM specification overview

Figure 4.8 gives an overview of the D-KLAIM specification. The modules D-KLAIM-META-
TOOLS and D-KLAIM-COMMUNICATION define the core syntax and semantics of D-
KLAIM. The theory SOCKET-INTERFACE is an abstraction of the socket behavior and
is a parameter of the communication module D-KLAIM-COMMUNICATION. The module
D-KLAIM instantiates the communication module with the view Socket and can be used as
a foundation for specifications that should be executed in a distributed environment. The
module D-KLAIM-ABSTRACTION instantiates the communication module with the view
Socket-Abstraction and can be used as a foundation for specifications where model checking
should be applicable.

4.6.3. D-KLAIM modules

D-KLAIM extends the OO-KLAIM specification with two main modules, D-KLAIM-META-
TOOLS and D-KLAIM-COMMUNICATION. These two modules specify the behavior of
socket-based communication. In the following we describe syntax and semantics provided
by the modules.

52

4.6. D-KLAIM — an extension of OO-KLAIM for distributed specifications

S :: SOCKET-INTERFACE

Socket Socket-Abstraction

SOCKET-
PORTAL

D-KLAIM
D-KLAIM-
ABSTRACTION

SOCKET-
PORTAL-
ABSTRACTION

D-KLAIM-
SOCKET-
ABSTRACTION

D-KLAIM-
COMMUNICATION

D-KLAIM-
META-TOOLS

to to

from fromuses uses

{Socket} {Socket-Abstraction}

Figure 4.8.: D-KLAIM specification overview

D-KLAIM-META-TOOLS

In Maude, terms which are sent through a socket have to be converted to terms of sort
String. In D-KLAIM, we want to send terms of the sort Msg. The module D-KLAIM-
META-TOOLS specifies the operators msg2String and string2Msg which convert messages to
string representations and vice versa. The variables

var N : Nat .

var MSG : Msg .

var Q : Qid .

var QL : QidList .

vars DATA S S’ S’’ : String .

are used for the specification of these operators.
The operator msg2String takes a message as argument and calls the meta-level opera-

tor metaPrettyPrint which, in this case, takes the meta-representation of the module that
defines the semantics of OO-KLAIM and the meta-representation of the message term as
arguments. The meta-representation of the message term is obtained by calling the upTerm

operator. metaPrettyPrint returns a list of quoted identifiers that meta-represent the string
of tokens produced by pretty-printing the message term in the signature of the OO-KLAIM
specification. Finally, the operator qidList2String converts the list of quoted identifiers to a
string representation by concatenating the string representations of each list item separated
by a space.

op msg2string : Msg -> String [memo] .

eq msg2string(MSG) =

53

4. Formal Languages for the Design and Analysis of Cloud-based Architectures

qidList2String(metaPrettyPrint(upModule(’OO-KLAIM-SEMANTICS, false),

upTerm(MSG))) .

op qidList2String : QidList -> String .

op qidList2StringRec : QidList String -> String .

eq qidList2String(QL) = qidList2StringRec(QL, "") .

eq qidList2StringRec(Q, S) = S + string(Q) .

eq qidList2StringRec(Q QL, S) =

qidList2StringRec(QL, S + string(Q) + " ") .

The operator string2Message takes the string representation of a message as an argu-
ment and first converts the string to a list of quoted identifiers by calling the operator
string2QidList. string2QidList searches the string for spaces from left to right and extracts
the substrings from the string. Each individual string is then turned into a quoted identifier
and appended to the resulting list of quoted identifiers. Next, the metaParse operator takes
the meta-representation of the module that defines the semantics of OO-KLAIM and the
list of quoted identifiers as arguments and tries to parse the given list of quoted identifiers
as a term of an arbitrary type that is defined in the OO-KLAIM specification. It returns,
if successful, a tuple that consists of the meta-representation of the parsed term and its
corresponding sort or kind. The getTerm operator extracts the meta-representation of the
parsed term from the tuple. Finally, the downTerm operator takes the meta-representation of
the parsed term and the message error as arguments. It returns the meta-representation of
the canonical form of the term if it is a term in the kind [Msg]. Otherwise, it returns the
error message error.

op error : String -> Msg [ctor] .

op string2msg : String -> Msg [memo] .

eq string2msg(S) =

downTerm(getTerm(metaParse(upModule(’OO-KLAIM-SEMANTICS,false),

string2QidList(S), anyType)), error(S)) .

op string2QidList : String -> QidList .

op string2QidListRec : String QidList -> QidList .

eq string2QidList(S) = string2QidListRec(S, METAnil) .

ceq string2QidListRec(S, QL) = string2QidListRec(S’’, QL qid(S’))

if N := find(S, " ", 0)

/\ S’ := substr(S, 0, N)

/\ S’’ := substr(S, N + 1, length(S)) .

eq string2QidListRec(S, QL) = QL qid(S) [owise] .

D-KLAIM-COMMUNICATION

The module D-KLAIM-COMMUNICATION specifies how socket communication is handled
in D-KLAIM. We first define the syntactical elements of the extension. The communicator

object keeps track of open sockets.

op communicator : Address -> Oid [ctor] .

op openSockets :_ : AddressList -> Attribute [ctor] .

The object accepts incoming sockets and creates additional objects to handle the communi-
cation. Regarding outgoing communication, the object keeps track of open sockets and only
opens a socket with a destination host, if no socket communication with that host exists.

54

4.6. D-KLAIM — an extension of OO-KLAIM for distributed specifications

This way the overhead of creating a new socket for each message that is sent to a destination
host can be reduced. The object further closes sockets if they are unused.

The TCP protocol does not preserve message boundaries. Our specifications of sockets
therefore relies on a buffering mechanism to provide reliable communication. As we allow
multiple messages to be sent through a single socket, we use "$#" as a message delimiting
sequence. The sequence "%" indicates that all messages have been transfered through a
socket and that the socket is ready to be closed. Two auxiliary objects are introduced, one
on the client side and one on the server side. Both objects are constructed using a simple
constructor for objects.

op (_::_) : Oid AttributeSet -> Object [ctor object] .

On the client side, for each socket, an object keeps track of waiting messages and the current
message that is sent through the socket.

op waiting :_ : MsgList -> Attribute [ctor] .

op current :_ : Msg -> Attribute [ctor] .

On the server side, for each incoming socket connection, a buffer object buffers the incoming
data and extracts messages from its buffer.

op buffer_ : Oid -> Oid [ctor] .

op buffer :_ : String -> Attribute [ctor] .

To describe the behavior of the socket communcation in the D-KLAIM extension, the
variables

vars LISTENER CLIENT SOCKET : Oid .

var ID : Qid .

vars IP IP1 IP2 DATA S S1 S2 : String .

vars PORT PORT1 PORT2 : Nat .

vars M M1 M2 : Msg .

var ML : MsgList .

var MC : MsgContents .

var N : Nat .

var ATTS : AttributeSet .

var AL : AddressList .

are used.
The startCommunicator object is a helper object which takes an IP address and a port as

arguments. Using this information, it creates the communicator object, starts the server-side
TCP socket to listen for incoming connections on the specified port, and adds a portal to
the configuration. The operator portal is described in more detail in Section 4.6.4.

op startCommunicator : String Nat -> Object [ctor] .

eq [startCommunicator] : startCommunicator(IP, PORT) =

(communicator(IP : PORT) :: openSockets : emptyAddressList)

|| createServerTcpSocket(socketManager,

communicator(IP : PORT), PORT, 5)

|| portal(IP, PORT) .

When the communicator object is informed that the server-side socket has been created, it
starts accepting clients.

rl [createdSocket-incoming] :

(communicator(IP : PORT) :: openSockets : AL, ATTS)

|| createdSocket(communicator(IP : PORT), socketManager, LISTENER)

55

4. Formal Languages for the Design and Analysis of Cloud-based Architectures

=>

(communicator(IP : PORT) :: openSockets : AL, ATTS)

|| acceptClient(LISTENER, communicator(IP : PORT)) .

When the communicator object is informed that a client has been accepted, a buffer object
for the incoming connection is created. The communicator object furthermore starts requesting
incoming data from the socket and accepts new incoming client connections.

rl [acceptedClient] :

(communicator(IP1 : PORT1) :: openSockets : AL, ATTS)

|| acceptedClient(communicator(IP1 : PORT1), LISTENER, IP2, CLIENT)

=>

(communicator(IP1 : PORT1) :: openSockets : AL, ATTS)

|| (buffer(CLIENT) :: buffer : "")

|| receive(CLIENT, communicator(IP1 : PORT1))

|| acceptClient(LISTENER, communicator(IP1 : PORT1)) .

Once data is received, the buffer object for the specific incoming connection adds the data
to its buffer and, if the sequence \%, which indicates that the end of messages, is not found
in the data requests more data from the socket.

crl [received-message] :

(buffer(CLIENT) :: buffer : S)

|| received(communicator(IP : PORT), CLIENT, DATA)

=>

(buffer(CLIENT) :: buffer : (S + DATA))

|| receive(CLIENT, communicator(IP : PORT))

if find(DATA, "%", 0) == notFound .

If the terminal symbol "%" is found in the incoming data, the data without the terminal
symbol is added to the buffer and the socket is closed.

crl [received-terminal] :

(buffer(CLIENT) :: buffer : S)

|| received(communicator(IP : PORT), CLIENT, DATA)

=>

(buffer(CLIENT) :: buffer : (S + substr(DATA, 0, N)))

|| closeSocket(CLIENT, communicator(IP : PORT))

if find(DATA, "%", 0) =/= notFound

/\ N := find(DATA, "%", 0) .

Buffer objects extract messages from its buffer if the message delimiting sequence is found
in the buffer.

crl [extract-message] :

(buffer(CLIENT) :: buffer : S1)

=>

(buffer(CLIENT) :: buffer : S2)

|| string2msg(substr(S1, 0, N))

if find(S1, "$#", 0) =/= notFound

/\ N := find(S1, "$#", 0)

/\ S2 := substr(S1, s(s(N)), length(S1)) .

When a buffer object has an empty buffer, i.e., when all messages have been extracted
and put into the configuration, and the socket is closed, the communicator object removes the
buffer from the configuration.

rl [closedSocket-incoming] :

56

4.6. D-KLAIM — an extension of OO-KLAIM for distributed specifications

(communicator(IP : PORT) :: openSockets : AL, ATTS)

|| (buffer(CLIENT) :: buffer : "")

|| closedSocket(communicator(IP : PORT), CLIENT, S)

=>

(communicator(IP : PORT) :: openSockets : AL, ATTS) .

Regarding outgoing communication, the communicator object opens a new socket for mes-
sages that are designated for a remote host if no socket communication with the remote host
already exists. If a new socket is created, a socket helper object is created and put into the
configuration.

crl [socket-notopen] :

(communicator(IP1 : PORT1) :: openSockets : AL, ATTS)

|| msg(IP2 : PORT2 # ID, MC)

=>

(communicator(IP1 : PORT1) ::

openSockets : ((IP2 : PORT2) // AL), ATTS)

|| (IP2 : PORT2 :: waiting : msg(IP2 : PORT2 # ID, MC))

|| createClientTcpSocket(socketManager, IP2 : PORT2, IP2, PORT2)

if not(contains(IP2 : PORT2, AL))

/\ not(IP1 == IP2 and PORT1 == PORT2) .

A message for a remote host is added to the list of messages waiting to be sent to the
host, if a helper object for a socket connection with that host exists in the configuration.

crl [socket-open] :

(IP : PORT :: waiting : ML)

|| msg(IP : PORT # ID, MC)

=>

(IP : PORT :: waiting : (msg(IP : PORT # ID, MC), ML))

if ML =/= emptyMsgList .

When a socket connection with a remote host has been established, the first message of
the list of waiting messages to be sent to that host is sent through the socket.

rl [createdSocket-outgoing] :

(IP : PORT :: waiting : (M, ML))

|| createdSocket(IP : PORT, socketManager, SOCKET)

=>

(IP : PORT :: waiting : ML, current : M)

|| send(SOCKET, IP : PORT, msg2string(M) + "$#") .

When a message has been sent through a socket and another message is waiting to be
sent to the same host, the next message is sent through the socket.

rl [send-next] :

(IP : PORT :: waiting : (M1, ML), current : M2)

|| sent(IP : PORT, SOCKET)

=>

(IP : PORT :: waiting : ML, current : M1)

|| send(SOCKET, IP : PORT, msg2string(M1) + "$#") .

When a message has been sent through a socket and no more messages are waiting to be
sent through the socket, the termination character is sent to indicate that all messages have
been sent.

op terminal : -> Msg [ctor] .

57

4. Formal Languages for the Design and Analysis of Cloud-based Architectures

crl [send-last] :

(IP : PORT :: waiting : emptyMsgList, current : M)

|| sent(IP : PORT, SOCKET)

=>

(IP : PORT :: waiting : emptyMsgList, current : terminal)

|| send(SOCKET, IP : PORT, "%")

if M =/= terminal .

When the termination character has been sent, the communicator waits for the socket to be
closed by the other side.

rl [sent-last] :

(communicator(IP1 : PORT1) :: openSockets : AL, ATTS)

|| (IP2 : PORT2 :: waiting : emptyMsgList, current : terminal)

|| sent(IP2 : PORT2, SOCKET)

=>

(communicator(IP1 : PORT1) :: openSockets : AL, ATTS)

|| (IP2 : PORT2 :: waiting : emptyMsgList) .

When the socket has been closed, the communicator knows that the remote host has re-
ceived all data. It then removes the helper object for the outgoing communication from the
configuration and the object’s identifier from the list of open sockets. It is of note that in
the time between when the termination character has been sent and the socket is closed, no
messages can be enqueued in the helper object.

rl [closed-socket] :

(communicator(IP1 : PORT1) :: openSockets : AL, ATTS)

|| (IP2 : PORT2 :: waiting : emptyMsgList)

|| closedSocket(IP2 : PORT2, SOCKET, S)

=>

(communicator(IP1 : PORT1) ::

openSockets : remove(IP2 : PORT2, AL), ATTS) .

4.6.4. The socket interface

The system theory SOCKET-INTERFACE declares a module interface for socket commu-
nication. The theory defines an operator portal which takes a term of sort String and a term
of sort Nat as arguments. The two arguments represent the IP address and the port of the
portal’s physical location.

th SOCKET-INTERFACE is

protecting STRING .

protecting CONFIGURATION * (op __ to _||_) .

op portal : String Nat -> Configuration [ctor] .

endth

In D-KLAIM, there are two modules that fulfill the SOCKET-INTERFACE theory,
SOCKET-PORTAL and SOCKET-ABSTRACTION. The D-KLAIM-COMMUNICATION
module requires a parameter that fulfils the SOCKET-INTERFACE theory and can be
instantiated with the two aforementioned modules. While the SOCKET-PORTAL mod-
ule provides the socket capabilities that come with the Maude distribution and allow for a
specification to be executed in a distributed environment, the SOCKET-ABSTRACTION
module gives an abstraction of Maude’s socket behavior and allows for specifications to be

58

4.6. D-KLAIM — an extension of OO-KLAIM for distributed specifications

model checked. It is of note that model checking is not possible using Maude’s built-in
socket capabilities.

Execution of specifications in a distributed environment

To use Maude’s built-in socket capabilities, the module SOCKET-PORTAL defines the
portal to be the operator <> which is part of the predefined module CONFIGURATION.
Thereby, the IP and port arguments of the portal operator are not needed.

mod SOCKET-PORTAL is

protecting STRING .

protecting CONFIGURATION * (op __ to _||_) .

var IP : String .

var PORT : Nat .

op portal : String Nat -> Configuration .

eq [portal] : portal(IP, PORT) = <> .

endm

view Socket-Portal from SOCKET-INTERFACE to SOCKET-PORTAL is

op portal to portal .

endv

The D-KLAIM socket abstraction

As Maude’s built-in socket capabilities do not allow for distributed specifications to be
model checked, we developed a socket abstraction that captures the behavior of Maude’s
socket capabilities inside a Maude specification. Using the socket abstraction, distributed
specifications of systems that rely on D-KLAIM’s socket communication can be specified in a
unified specification. The unified specification can then also be model checked. The module
SOCKET-PORTAL-ABSTRACTION defines the operator abstractPortal, which creates an
abstract portal that is used by the socket abstraction.

mod SOCKET-PORTAL-ABSTRACTION is

protecting STRING .

protecting OO-KLAIM-SOCKET-ABSTRACTION .

var IP : String .

var PORT : Nat .

op abstractPortal : String Nat -> Configuration .

eq [abstract-portal] : abstractPortal(IP, PORT) =

< socketManager :: ip : IP, port : PORT, state : initialized > .

endm

view Socket-Abstraction from SOCKET-INTERFACE to SOCKET-PORTAL-ABSTRACTION is

op portal to abstractPortal .

endv

In the following, we give an in-depth description of the D-KLAIM socket abstraction. To
syntactically reflect a network of individual OO-KLAIM configurations in a single term, the
sort NetworkConfiguration is defined.

59

4. Formal Languages for the Design and Analysis of Cloud-based Architectures

[

Portal1 || Communicator1 || Node1.1 || . . . || Node1.N

]

[Configuration1]

||
. . .

||

[ConfigurationK]

[

PortalK || CommunicatorK || NodeK.1 || . . . || NodeK.N

]

Network Configuration

Figure 4.9.: Overview of a network configuration in the D-KLAIM socket abstraction

sort NetworkConfiguration .

op [_] : Configuration -> NetworkConfiguration [ctor] .

op _||_ : NetworkConfiguration NetworkConfiguration -> NetworkConfiguration

[ctor config assoc comm] .

Figure 4.9 gives an overview of a network configuration in the D-KLAIM socket abstraction.

The syntax of the abstract portal resembles the syntax of the portal in the predefined
CONFIGURATION module. It adds a set of attributes which include the IP address and
port of the physical location. The object identifier of the abstract portal is the socketManager

object identifier which is defined in Maude’s SOCKET module. The external object with
that identifier that usually handles the creation of sockets is thereby made an internal object
in the socket abstraction.

op <_::_> : Oid AttributeSet -> Configuration [ctor object] .

op acceptor :_ : Oid -> Attribute [ctor gather(&)] .

op ip :_ : String -> Attribute [ctor gather(&)] .

op port :_ : Nat -> Attribute [ctor gather(&)] .

In the socket abstraction, sockets are objects that are part of the network configuration.
The constructor

op (_::_) : Oid AttributeSet -> Configuration [ctor object] .

adds a simple constructor for socket objects. Socket objects are identified by socket identi-
fiers which are constructed by the identifiers of the socket’s endpoints. The socket abstrac-
tion assumes that only one socket between two endpoints exists. Hence the socket identifier
is unique.

sort Endpoint .

subsort Endpoint < Oid .

op e : String Nat -> Endpoint [ctor] .

sort SocketIdentifier .

subsort SocketIdentifier < Nat .

op id : Endpoint Endpoint -> SocketIdentifier [ctor] .

60

4.6. D-KLAIM — an extension of OO-KLAIM for distributed specifications

Socket objects store the contents that are sent through the socket, i.e., the contents that
are just being transferred, keep track of the server and client endpoints and the object that
created the socket.

op contents :_ : String -> Attribute [ctor gather(&)] .

op serverEndpoint :_ : Endpoint -> Attribute [ctor gather(&)] .

op clientEndpoint :_ : Endpoint -> Attribute [ctor gather(&)] .

op creator :_ : Oid -> Attribute [ctor gather(&)] .

States are used by the socket objects and the abstract portal. The abstract portal can
be in the states: initialized, listening, or accepting. Sockets can be in the sates: initialized,
receiving, or idle.

sort State .

ops initialized listening accepting idle receiving : -> State .

op state :_ : State -> Attribute [ctor gather(&)] .

The variables

vars C C1 C2 : Configuration .

vars IP IP1 IP2 DATA REASON CONTENTS : String .

vars PORT PORT1 PORT2 BACKLOG : Nat .

var ID : SocketIdentifier .

vars ATTS ATTS1 ATTS2 : AttributeSet .

vars O O1 O2 : Oid .

vars NC NC’ : NetworkConfiguration .

var STATE: State .

are used for the description of the behavior of the socket abstraction.
External rewrites in Maude happen only if no internal rewrites are possible. To reflect this

in the specification of the socket abstraction, the meta-level is used to define the operator
noInternalTransitions, which checks if rewrites internal to one of the configurations in a
network configuration are possible. For each configuration in the network configuration, the
operator calls the operator metaSearch that takes the meta-representation of the D-KLAIM
socket communication semantics module and the meta-representation of the configuration
term as arguments. The additional parameters define the search pattern. In our example,
metaSearch searches if the configuration can be rewritten to another configuration in at least
one rewriting step.

op noInternalTransitions : NetworkConfiguration -> Bool .

eq noInternalTransitions([C]) =

metaSearch(upModule(’D-KLAIM-COMMUNICATION, false),

upTerm(C), ’R:Configuration, nil, ’+, 1, 0) == failure .

eq noInternalTransitions([C] || NC) =

if metaSearch(upModule(’D-KLAIM-COMMUNICATION, false),

upTerm(C), ’R:Configuration, nil, ’+, 1, 0) == failure

then noInternalTransitions(NC)

else false fi .

In the following, all rules of the socket abstraction are only applicable, if no internal
rewrites are possible.

When one of the participating configurations creates a server-side socket, the abstract
portal changes its state from initialized to listening.

crl [createServerTcpSocket] :

[C || createServerTcpSocket(socketManager, O, PORT, BACKLOG)

61

4. Formal Languages for the Design and Analysis of Cloud-based Architectures

|| < socketManager :: ip : IP, port : PORT, state : initialized >]

=>

[C || createdSocket(O, socketManager, e(IP, PORT))

|| < socketManager :: ip : IP, port : PORT, state : listening >]

if noInternalTransitions([C]) .

In case the abstract portal is already in the listening state, a socketError message saying
that the address is already in use is created.

crl [createServerTcpSocket-error] :

[C || createServerTcpSocket(socketManager, O, PORT, BACKLOG)

|| < socketManager :: ip : IP, port : PORT, state : listening, ATTS >]

=>

[C || socketError(O, socketManager, "Address already in use")

|| < socketManager :: ip : IP, port : PORT, state : listening, ATTS >]

if noInternalTransitions([C]) .

When the configuration accepts a client, the abstract portal changes its state from listening
to accepting.

crl [acceptClient] :

[C || acceptClient(e(IP, PORT), O)

|| < socketManager :: ip : IP, port : PORT, state : listening >]

=>

[C || < socketManager :: ip : IP, port : PORT, state : accepting,

acceptor : O >]

if noInternalTransitions([C]) .

When a client socket is created by one of the configurations and the destination con-
figuration’s abstract portal is accepting incoming sockets, the destination configuration is
informed that a client has been accepted. Thereby the state of the destination’s abstract
portal is changed from accepting to listening. Additionally, a socket object is created. The
socket’s identifier contains the information about the endpoints it connects.

crl [createClientTcpSocket] :

[C1 || createClientTcpSocket(socketManager, O1, IP2, PORT2)

|| < socketManager :: ip : IP1, port : PORT1, ATTS >]

|| [C2 || < socketManager :: ip : IP2, port : PORT2, state : accepting,

acceptor : O2 >]

=>

[C1 || createdSocket(O1, socketManager, socket(ID))

|| < socketManager :: ip : IP1, port : PORT1, ATTS >]

|| [C2 || acceptedClient(O2, e(IP2, PORT2), IP1, socket(ID))

|| < socketManager :: ip : IP2, port : PORT2, state : listening >]

|| [socket(ID) :: state : initialized, creator : O1, contents : "",

clientEndpoint : e(IP1, PORT1), serverEndpoint : e(IP2, PORT2)]

if ID := id(e(IP1, PORT1), e(IP2, PORT2))

/\ noInternalTransitions([C1] || [C2]) .

When a configuration that established a client socket connection tells the socket that it
is ready to receive data, the socket’s state changes from initialized to receiving.

crl [receive-initialized] :

[C || receive(socket(ID), O)]

|| [socket(ID) :: state : initialized, ATTS]

=>

[C]

|| [socket(ID) :: state : receiving, ATTS]

62

4.6. D-KLAIM — an extension of OO-KLAIM for distributed specifications

if noInternalTransitions([C]) .

Similarly, if a configuration tells a socket that it is ready to receive data and the socket is
in the idle state, the socket changes its state to receiving.

crl [receive-idle] :

[C || receive(socket(ID), O)]

|| [socket(ID) :: state : idle, ATTS]

=>

[C]

|| [socket(ID) :: state : receiving, ATTS]

if noInternalTransitions([C]) .

When a configuration sends data to a socket and the socket is in the receiving state, the
socket adds this data to its contents.

crl [send] :

[C || send(socket(ID), O, DATA)]

|| [socket(ID) :: state : receiving, contents : CONTENTS, ATTS]

=>

[C || sent(O, socket(ID))]

|| [socket(ID) :: state : receiving, contents : (CONTENTS + DATA), ATTS]

if noInternalTransitions([C]) .

If a socket’s contents are non-empty and the socket’s state is receiving, the socket passes
its contents on to the receiving configuration, i.e., the server endpoint’s configuration. The
state of the socket thereby changes from receiving to idle.

crl [received] :

[C || < socketManager :: ip : IP2, port : PORT2, acceptor : O, ATTS1 >]

|| [socket(ID) :: state : receiving, contents : CONTENTS,

serverEndpoint : e(IP2, PORT2), ATTS2]

=>

[C || < socketManager :: ip : IP2, port : PORT2, acceptor : O, ATTS1 >

|| received(O, socket(ID), CONTENTS)]

|| [socket(ID) :: state : idle, contents : "",

serverEndpoint : e(IP2, PORT2), ATTS2]

if CONTENTS =/= ""

/\ noInternalTransitions([C]) .

When a configuration closes a socket, the client and the server endpoints’ configurations
are informed about the closed socket and the socket is removed from the network configu-
ration.

crl [closeSocket] : [C2 || closeSocket(socket(ID), O1)]

|| [C1 || < socketManager :: ip : IP1, port : PORT1, ATTS >]

|| [socket(ID) :: state : STATE, creator : O2,

clientEndpoint : e(IP1, PORT1), serverEndpoint : e(IP2, PORT2), ATTS1]

=>

[C2 || closedSocket(O1, socket(ID), "")]

|| [C1 || < socketManager :: ip : IP1, port : PORT1, ATTS >

|| closedSocket(O2, socket(ID), "")]

if noInternalTransitions([C1] || [C2]) .

63

4. Formal Languages for the Design and Analysis of Cloud-based Architectures

Cloud

Fibonacci-Consumer

“192.168.0.1” : 8000

Node

Communicator

Portal

||

||

Fibonacci-Developer

“192.168.0.2” : 8000

Node

Communicator

Portal

||

||

Fibonacci-Server

“192.168.123.50” : 8000

Node

Communicator

Portal

||

||

3

1

2

4

1: Start Fibonacci service on a server in the Cloud
2: Create storage node
3: Request Fibonacci number
4: Send Fibonacci number

Figure 4.10.: Overview of the Fibonacci Cloud service architecture

4.6.5. Example of a Cloud-based architecture specification based on
D-KLAIM

In this Section, we show how a Cloud-based architecture can be specified based on D-KLAIM.
We consider the following example: a service developer develops a Fibonacci service. The
service should provide high scalability and availability and is started in the Cloud. A
consumer calls the service in the Cloud and stores the incoming Fibonacci numbers in a
local storage.

In the D-KLAIM-based specification of this example, each participating entity, the devel-
oper, the consumer, and the server in the Cloud are modeled as KLAIM nets. Initially, each
net contains a KLAIM node, a communicator object, and a portal. Figure 4.10 provides an
overview of the Fibonacci Cloud service architecture.

We specify the behavior of the server and the consumer in two separate process contexts.
The process context of the server provides the process definitions ’Fib and ’FibRec, which
produce a continuous series of Fibonacci numbers upon client requests sending the produced
numbers back to the clients.

eq Context =

’Fib (nilProcessVarNameSeq, nilLocalityVarNameSeq, nilVarNameSeq)

=def in(! u ’Client)@ self

. out([0])@ u ’Client{0}

. out([0], [1])@ self

. ’FibRec < nilProcessSeq, nilLocalitySeq, nilExpressionSeq > &

64

4.6. D-KLAIM — an extension of OO-KLAIM for distributed specifications

’FibRec (nilProcessVarNameSeq, nilLocalityVarNameSeq, nilVarNameSeq)

=def in(! u ’Client)@ self

. in(! x ’f1, ! x ’f2)@ self

. out(x ’f1{0} +e x ’f2{0})@ u ’Client{0}

. out(x ’f1{0} +e x ’f2{0}, x ’f1{0})@ self

. ’FibRec < nilProcessSeq, nilLocalitySeq, nilExpressionSeq > .

The process context of the consumer provides the ’ConsumeFibRec process definition, which
consumes an incoming Fibonacci number by storing it in a local storage. After that, it
requests the next number from the server.

eq Context =

’ConsumeFibRec (nilProcessVarNameSeq, (u ’Store ; u ’Cloud), nilVarNameSeq)

=def in(! x ’Fib)@ self . out(x ’Fib{0})@ u ’Store{0}

. out(self)@ u ’Cloud{0}

. (’ConsumeFibRec < nilProcessSeq, (u ’Store{0} ; u ’Cloud{0}),

nilExpressionSeq >) .

The initial configuration of the server consists of no more than a plain KLAIM node with
the nil process. This resembles a typical situation in Cloud Computing where new resources
are often virtual machines that provide no more than an operating system.

startCommunicator("192.168.123.50", 8000)

|| ("192.168.123.50" : 8000 / ’0 {0}::

{["192.168.123.50" : 8000 / ’0 / self]} nil)

The initial configuration of the developer consists of a KLAIM node with a process that
starts the Fibonacci service on the server in the Cloud.

startCommunicator("192.168.0.2", 8000)

|| ("192.168.0.2" : 8000 / ’0 {0}::

{["192.168.0.2" : 8000 / ’0 / self]}

eval(in(! x ’Start)@ self

. (’Fib < nilProcessSeq, nilLocalitySeq, nilExpressionSeq >))@

("192.168.123.50" : 8000 / ’0) . nil |

out([0])@ ("192.168.123.50" : 8000 / ’0) . nil)

Finally, the initial configuration of the consumer consists of a KLAIM node with a process
that first creates another node as a storage node and then starts requesting Fibonacci
numbers from the server in the Cloud.

startCommunicator("192.168.0.1", 8000)

|| ("192.168.0.1" : 8000 / ’0 {0}::

{["192.168.0.1" : 8000 / ’0 / self]}

newloc(u ’Store)

. out(self)@ ("192.168.123.50" : 8000 / ’0)

. (’ConsumeFibRec < nilProcessSeq,

(u ’Store{0} ; ("192.168.123.50" : 8000/ ’0)),

nilExpressionSeq >))

The specification can now be executed on distributed machines using three Maude in-
stances and the erew command.

The example of the Cloud-based Fibonacci service shows that a Cloud-based architecture
can easily be specified at a high level based on D-KLAIM. Furthermore, the specification
can be executed in a distributed environment. This opens the possibility of using D-KLAIM
and the Maude system as a rapid prototyping environment for Cloud-based architectures.

65

4. Formal Languages for the Design and Analysis of Cloud-based Architectures

4.7. Maude-based formal analysis of *-KLAIM

In the following we demonstrate how specifications based on *-KLAIM (M-KLAIM, OO-
KLAIM, and D-KLAIM) can be formally analyzed using the Maude LTL model checker and
the Maude search command.

4.7.1. Maude LTL model checking

Maude supports on-the-fly explicit state linear temporal logic (LTL) model checking of
concurrent systems [100, 35]. Both, the system specification and the property specification
are given in Maude. The Maude LTL model checker can be used to prove properties such as
safety properties (something bad never happens) and liveness properties (something good
will eventually happen) when the set of states that are reachable from the initial state of
a system module is finite. The operators needed for the specification of model checking in
Maude are specified in the predefined module MODEL-CHECKER.

4.7.2. A *-KLAIM-based token-based mutual exclusion algorithm

This example demonstrates how a token-based mutual exclusion algorithm similar to the
synchronization model proposed in Example 4.1 can be specified and analyzed in *-KLAIM.
The goal is to give an executable specification of the algorithm and to model check if the
algorithm fulfills the mutual exclusion property and provides strong liveness guarantees.

The KLAIM net consists of three KLAIM nodes: one token server and two consumers. A
token exists in the net and is represented by the value [0]. It is, if available for consumption,
present as a tuple in the tuple space of the token server. The consumers can bid for the
token by requesting it from the token server. In case the token is available in the tuple
space of a consumer, i.e., the token was transferred from the token server to the consumer,
the consumer enters its critical section by changing the value of the token. A consumer is
defined to be in a critical section if it holds the tuple [1] in its tuple space. A consumer
leaves the critical section when it consumes the tuple [1] and puts back the token tuple [0]

into the tuple space of the token server. In the following, we specify the process context,
which includes the process definitions to request a token from the token server (’Request)
and to enter and exit a critical section (’Enter and ’Exit).

ops tokenServer consumer1 consumer2 : -> Site [ctor] .

eq context =

(’Request (nilProcessVarNameSeq, nilLocalityVarNameSeq, nilVarNameSeq)

=def in(! x ’Token)@ tokenServer

. out(x ’Token{0})@ self

. ’Enter < nilProcessSeq, nilLocalitySeq, nilExpressionSeq >) &

(’Enter (nilProcessVarNameSeq, nilLocalityVarNameSeq, nilVarNameSeq)

=def in(! x ’Token)@ self

. out([1])@ self

. ’Exit < nilProcessSeq, nilLocalitySeq, nilExpressionSeq >) &

(’Exit (nilProcessVarNameSeq, nilLocalityVarNameSeq, nilVarNameSeq)

=def in(! x ’Token)@ self

. out([0])@ tokenServer

. ’Request < nilProcessSeq, nilLocalitySeq, nilExpressionSeq >) .

66

4.7. Maude-based formal analysis of *-KLAIM

The specification of the process context is shared by the specifications of *-KLAIM. Thus,
the aforementioned defining equation of the process context for the mutual exclusion algo-
rithm example is valid for all the specifications of the algorithm that we will present in this
section.

Defining mutual exclusion and strong liveness

Mutual exclusion and strong liveness are two desirable properties of a mutual exclusion
algorithm. In our example, mutual exclusion means that the two consumers are not in their
critical sections simultaneously. Strong liveness means that if a consumer requests the token
at certain point in time, the consumer eventually gets the token in order to enter its critical
section. We first define two auxiliary properties, critical and requesting, which, for a given
site, state if the node at the specified site is in its critical section or is requesting the token
from the token server. Mutual exclusion is then defined by the LTL formula

[] ~(critical(consumer1) /\ critical(consumer2))

and strong liveness of the consumers is defined by the LTL formulas

([]<> requesting(consumer1)) -> ([]<> critical(consumer1))

and

([]<> requesting(consumer2)) -> ([]<> critical(consumer2)) .

M-KLAIM-based model checking

In the specification based on M-KLAIM, model checking states are of sort Net.

subsort Net < State .

We first specify the properties critical and requesting based on M-KLAIM.

ops critical requesting : Site -> Prop .

var S : Site .

var N : Net .

var AE : AllocationEnvironment .

var P : Process .

var PR : Prop .

eq (S {0}::{AE} out([1]) | P) || N

|= critical(S) = true .

eq (S {0}::{AE}

’Request < nilProcessSeq, nilLocalitySeq, nilExpressionSeq >) || N

|= requesting(S) = true .

eq N |= PR = false [owise] .

Next, we specify the initial state for the model checking of the mutual exclusion algorithm
based on M-KLAIM.

eq tokenServer = site ’TokenServer .

eq consumer1 = site ’Consumer1 .

eq consumer2 = site ’Consumer2 .

op initial : -> Net .

67

4. Formal Languages for the Design and Analysis of Cloud-based Architectures

eq initial =

(tokenServer {0}::{[tokenServer / self]} out([0])) ||

(consumer1 {0}::{[consumer1 / self] * [tokenServer / ’TokenServer]}

’Request < nilProcessSeq, nilLocalitySeq, nilExpressionSeq >) ||

(consumer2 {0}::{[consumer1 / self] * [tokenServer / ’TokenServer]}

’Request < nilProcessSeq, nilLocalitySeq, nilExpressionSeq >) .

Model checking of the mutual exclusion property of the algorithm based on M-KLAIM is
achieved by giving the command

Maude> red

modelCheck(initial, []~ (critical(consumer1) /\ critical(consumer2))) .

reduce in KLAIM-MUTEX-CHECK :

modelCheck(initial, []~ (critical(consumer1) /\ critical(consumer2))) .

rewrites: 1016 in 0ms cpu (3ms real) (1395604 rewrites/second)

result Bool: true

which shows that the property holds. Model checking of the strong liveness properties is
achieved by giving the commands

Maude> red

modelCheck(initial, []<> requesting(consumer1) -> []<> critical(consumer1)) .

reduce in KLAIM-MUTEX-CHECK :

modelCheck(initial, []<> requesting(consumer1) -> []<> critical(consumer1)) .

rewrites: 723 in 2ms cpu (2ms real) (263100 rewrites/second)

result [ModelCheckResult]: counterexample(...)

and

Maude> red

modelCheck(initial, []<> requesting(consumer2) -> []<> critical(consumer2)) .

reduce in KLAIM-MUTEX-CHECK :

modelCheck(initial, []<> requesting(consumer2) -> []<> critical(consumer2)) .

rewrites: 896 in 3ms cpu (4ms real) (288566 rewrites/second)

result [ModelCheckResult]: counterexample(...)

which show that the liveness properties do not hold. The counterexamples, which are omit-
ted for reasons of brevity, show that each one of the consumers can starve, i.e., for each
consumer a looping path of transitions exists where in each intermediate state the property
critical does not hold for the consumer. Figure A.2 shows a graphical representation of the
counterexample for the liveness of consumer2.

OO-KLAIM-based model checking

In the specification based on OO-KLAIM, model checking states are of sort Configuration.

subsort Configuration < State .

We first specify the auxiliary properties critical and requesting based on OO-KLAIM.

ops critical requesting : Site -> Prop .

var S : Site .

var C : Configuration .

var AE : AllocationEnvironment .

var P : Process .

var PR : Prop .

68

4.7. Maude-based formal analysis of *-KLAIM

eq (S {0}::{AE} out([1]) | P) || C

|= critical(S) = true .

eq (S {0}::{AE}

’Request < nilProcessSeq, nilLocalitySeq, nilExpressionSeq >) || C

|= requesting(S) = true .

eq C |= PR = false [owise] .

What follows is the definition of the initial state for the model checking of the mutual
exclusion algorithm based on OO-KLAIM.

eq tokenServer = "127.0.0.1" : 8000 # ’0 .

eq consumer1 = "127.0.0.1" : 8000 # ’1 .

eq consumer2 = "127.0.0.1" : 8000 # ’2 .

op initial : -> Configuration .

eq initial =

(tokenServer {0}::{[tokenServer / self]} out([0])) ||

(consumer1 {0}::{[consumer1 / self] * [tokenServer / ’TokenServer]}

’Request < nilProcessSeq, nilLocalitySeq, nilExpressionSeq >) ||

(consumer2 {0}::{[consumer1 / self] * [tokenServer / ’TokenServer]}

’Request < nilProcessSeq, nilLocalitySeq, nilExpressionSeq >) .

Model checking of the mutual exclusion and liveness properties of the algorithm based
on OO-KLAIM works as shown for the algorithm based on M-KLAIM. The results are the
same, i.e., the mutual exclusion property holds and the strong liveness properties for the
consumers do not hold.

D-KLAIM-based model checking

In order to be able to model check the specification of the algorithm based on D-KLAIM,
we use the socket abstraction introduced in Section 4.6.4. Model checking states are thereby
of sort NetworkConfiguration.

subsort NetworkConfiguration < State .

We first define of the auxiliary properties critical and requesting based on D-KLAIM and
the socket abstraction.

ops critical requesting : Site -> Prop .

var S : Site .

var C : Configuration .

var NC : NetworkConfiguration .

var AE : AllocationEnvironment .

var P : Process .

var PR : Prop .

eq [(S {0}::{AE} out([1]) | P) || C] || NC

|= critical(S) = true .

eq [(S {0}::{AE}

’Request < nilProcessSeq, nilLocalitySeq, nilExpressionSeq >) || C]

|| NC

|= requesting(S) = true .

eq C |= PR = false [owise] .

What follows is a definition of the initial state for the model checking of the mutual
exclusion algorithm based on D-KLAIM and the socket abstraction.

69

4. Formal Languages for the Design and Analysis of Cloud-based Architectures

eq tokenServer = "192.168.123.1" : 8000 # ’0 .

eq consumer1 = "192.168.123.2" : 8000 # ’0 .

eq consumer2 = "192.168.123.3" : 8000 # ’0 .

op initial : -> NetworkConfiguration .

eq initial =

[startCommunicator("192.168.123.1", 8000, none) ||

(tokenServer {0}::{[tokenServer / self]} out([0]))] ||

[startCommunicator("192.168.123.2", 8000, none) ||

(consumer1 {0}::{[consumer1 / self] * [tokenServer / ’TokenServer]}

’Request < nilProcessSeq, nilLocalitySeq, nilExpressionSeq >)] ||

[startCommunicator("192.168.123.3", 8000, none) ||

(consumer2 {0}::{[consumer1 / self] * [tokenServer / ’TokenServer]}

’Request < nilProcessSeq, nilLocalitySeq, nilExpressionSeq >)] .

Model checking of the mutual exclusion and strong liveness properties of the specification
based on D-KLAIM and the socket abstraction works just as with the specifications based on
M-KLAIM and OO-KLAIM. As additional intermediate states are introduced by the socket
abstraction, the model checker now works on a much bigger state space. As a result, the
model checking of the individual properties took up to 13 hours, whereas model checking of
the same properties on the specifications based on M-KLAIM and OO-KLAIM took seconds
on the same machine.

4.7.3. Model checking using the Maude search command

Maude’s search command explores the reachable state space from an initial state for a
pattern that has to be reached, possibly subjected to a user-specified semantic condition.
The search can be further restricted by the form of the rewriting proof from the initial to
the final term. Possible forms are,

• =>1, which means that a rewriting proof consisting of exactly one step is searched for.

• =>+, which means that a rewriting proof consisting of one or more steps is searched for.

• =>*, which means that a proof of none, one, or more steps is searched for.

• =>!, which indicates that only canonical final states, i.e., states were no further rewrites
are possible, are searched for.

To model check invariants, i.e., predicates that define a set of states that contain all the states
reachable from an initial state, with the search command, the optional semantic condition,
corresponding to the violation of the invariant, is specified. Under some assumptions, which
are omitted here for reasons of simplicity, for any invariant I(x : k) and an initial state init,
I holds if and only if the command

search init =>* x:k such that not I(x : k) .

returns no solutions (k is the kind of the term init). For an in-depth description of the
search command we refer to [35].

70

4.7. Maude-based formal analysis of *-KLAIM

Producer

“192.168.0.100” : 6000 # ’0

[0] [1] [2] [3]

Load Balancer

“192.168.0.1” : 8080 # ’0

Consumer1

“192.168.123.1” : 9000 # ’0

Consumer2

“192.168.123.2” : 9000 # ’0

Figure 4.11.: Schematic overview of the load balancer example

4.7.4. A D-KLAIM-based load balancer

In this example we show how a simple load balancer based on D-KLAIM can be specified.
We then analyze the load balancer using the Maude search command.

Four nodes, a producer, a load balancer, and two consumers, form a KLAIM net. Initially,
the producer has four tuples in its tuple space. These tuples can be seen as abstractions of
work tasks. The producer then puts each tuple into the tuple space of the load balancer. The
load balancer consumes tuples in its tuple space and distributes the tuples across the tuple
spaces of the consumers in an alternating order. The expected outcome of the scenario is
that each consumer is assigned two work tasks, i.e., each consumer ends up with two tuples
in its tuple space. Figure 4.11 provides a schematic overview of the load balancer example.

We first define the initial configuration of the simple load balancer example based on
D-KLAIM and the socket abstraction.

ops producer loadBalancer consumer1 consumer2 : -> Site .

eq producer = "192.168.0.100" : 6000 # ’0 .

eq loadBalancer = "192.168.0.1" : 8080 # ’0 .

eq consumer1 = "192.168.123.1" : 9000 # ’0 .

eq consumer2 = "192.168.123.2" : 9000 # ’0 .

op loadBalancerExample : -> NetworkConfiguration .

eq loadBalancerExample =

[startCommunicator("192.168.0.100", 6000, none) ||

(producer {0}::{[producer / self] * [loadBalancer / ’WorkBalancer]}

out([0]) | out([1]) | out([2]) | out([3]) |

in(! x ’X)@ self . out(x ’X {0})@ ’WorkBalancer .

in(! x ’X)@ self . out(x ’X {0})@ ’WorkBalancer .

in(! x ’X)@ self . out(x ’X {0})@ ’WorkBalancer .

in(! x ’X)@ self . out(x ’X {0})@ ’WorkBalancer . nil)] ||

[startCommunicator("192.168.0.1", 8080, none) ||

71

4. Formal Languages for the Design and Analysis of Cloud-based Architectures

(loadBalancer {0}::{[loadBalancer / self] *

[consumer1 / ’Consumer1] * [consumer2 / ’Consumer2]}

in(! x ’X)@ self . out(x ’X {0})@ ’Consumer1 .

in(! x ’X)@ self . out(x ’X {0})@ ’Consumer2 .

in(! x ’X)@ self . out(x ’X {0})@ ’Consumer1 .

in(! x ’X)@ self . out(x ’X {0})@ ’Consumer2 . nil)] ||

[startCommunicator("192.168.123.1", 9000, none) ||

(consumer1 {0}::{[consumer1 / self]} nil)] ||

[startCommunicator("192.168.123.2", 9000, none) ||

(consumer2 {0}::{[consumer2 / self]} nil)] .

Searching for possible final states

To determine all possible final states, i.e., all states in which no more rewrites are possible,
the following Maude search command is used:

search in D-KLAIM-ABSTRACTION :

loadBalancerExample =>! NC:NetworkConfiguration .

The search yields six possible final states, which correspond to the possible distribution
of tuples across the consumers’ tuple spaces. The following table shows the possible final
configurations of the tuple spaces. Note that a tuple space is a commutative collection of
tuples. E.g., out([0])| out([1]) and out([1])| out([0]) describe the same tuple space. In all
cases each consumer ends up with two tuples in its tuple space, as conjectured.

Consumer 1’s tuple space Consumer 2’s tuple space

out([0]) | out([1]) out([2]) | out([3])

out([0]) | out([2]) out([1]) | out([3])

out([0]) | out([3]) out([1]) | out([2])

out([1]) | out([2]) out([0]) | out([3])

out([1]) | out([3]) out([0]) | out([2])

out([2]) | out([3]) out([0]) | out([1])

Model checking of an invariant

An invariant that our simple load balancer example should fulfill is that at no point in time
a consumer has more than two tuples in its tuple space. In the following, the variables

var NC : NetworkConfiguration .

var C : Configuration .

var A : Site .

var AE : AllocationEnvironment .

var P : Process .

var AP : AuxiliaryProcess .

var SP : SyntacticProcess .

are used.
We first define the auxiliary property

op lessEqThanTwo : NetworkConfiguration -> Bool .

which takes a network configuration as an argument and determines if the two consumers
in the network configuration each have less or equal than two tuples in their tuple spaces.

72

4.8. Related Work

op count : Process -> Nat .

eq lessEqThanTwo([C || (A {0}::{AE} P)])

= if A == consumer1 or A == consumer2 then

count(P) <= 2

else false fi .

eq lessEqThanTwo([C] || NC) =

lessEqThanTwo([C]) or lessEqThanTwo(NC) .

eq count(SP) = 0 .

eq count(AP | P) = s(count(P)) .

We then use the command

Maude> search loadBalancerExample =>* NC:NetworkConfiguration

such that not lessEqThanTwo(NC) .

to model check the invariant. The result is, that the invariant holds as no solutions are
found.

4.8. Related Work

Here we discuss related work on process calculi, the formal design and analysis of distributed
and Cloud Computing service-oriented architectures, and KLAIM.

Besides KLAIM [38] and Linda [50], several other calculi and formal languages that can
express and analyze mobile and distributed computing have been proposed. Two examples
that also influenced the work in this thesis are Mobile ambients [31] and Mobile Maude
[42]: Mobile ambients is a calculus that describes the movement of processes and devices;
Mobile Maude is a mobile agent language that extends Maude with the support for mobile
computation.

Many of the aforementioned calculi and formal languages are influenced by the leading
examples of classic process calculi including CSP [63], CCS [83], LOTOS [44], and the π-
calculus [85]. PEPA (Performance Evaluation Process Algebra) [62] is a stochastic process
algebra which is based classical process algebras and introduces probabilistic branching and
timing of transitions.

With the rise of the Internet and Cloud Computing came a great demand to automate
business processes and workflows among organizations and individuals. Service-oriented
solutions require an orchestration among different services which may be distributed and run
concurrently. [86] describes Orc, a theory for the orchestration of such services and provides a
timed and concurrent programming language; in [6], AlTurki formally specified and analyzed
the Orc language using the Maude system. Works in the Eu-project SENSORIA also face
the challenges of distributed service-oriented computing with formal design and analysis:
In [22], formal methods are used to model and verify a variant of SOAP that supports
asynchronous communication; [120] shows how a performance analysis of a service-oriented
system specified as an UML model can be achieved. Thereby, the UML model is transformed
into a PEPA process which is then analyzed using a stochastic model checker or a transient
analysis evaluator.

The KLAIM formalism itself has been extended and used in multiple ways. X-KLAIM
[26] is a programming language, based on KLAIM, for programming distributed applications
with object-oriented mobile code. There is also a compiler to translate X-KLAIM code into

73

4. Formal Languages for the Design and Analysis of Cloud-based Architectures

Java code that uses KLAVA [25], a Java-based run-time system for KLAIM. Other work
focuses on a temporal logic for the specification of properties of Klaim programs [88].

4.9. Conclusion

In this chapter, we have shown the Maude-based specification of a formal language based
on the KLAIM language specification (M-KLAIM). We further extended this specification
with object-orientation (OO-KLAIM) and showed how sockets can be used to execute such
specifications in a distributed environment (D-KLAIM). Finally, we demonstrated how spec-
ifications based on *-KLAIM can be formally analyzed using model checking.

The various examples in this chapter have shown that the design and analysis of dis-
tributed systems such as Cloud Computing systems are possible using the *-KLAIM lan-
guage specifications as a foundation. It was further shown that the languages provided in
this chapter might prove themselves helpful for the rapid prototyping of such systems.

74

5 C
h

ap
te

r

A Modularized Actor Model for
Statistical Model Checking

In this chapter, we introduce the standard actor model of computation and its Maude-based
implementations, which can be used as foundation for the specification and statistical model
checking of distributed systems. We further present an extension of the actor model which
incorporates the Russian dolls model (modularity) and fulfills the requirements for statistical
model checking. As the absence of un-quantified non-determinism is required to perform
statistical model checking, we provide the description of a multi-level scheduling approach
for our actor model which fulfills this requirement.

In the following, we

1. give an overview of the actor model of computation (Section 5.1),

2. provide an introduction to statistical model checking (Section 5.2),

3. introduce the Reflective Russian Dolls model (Section 5.3),

4. extend the standard actor model to support Russian dolls models (Section 5.4),

5. and finally show how the multi-level scheduling approach is specified and how it assures
the absence of un-quantified non-determinism for the extended actor model
(Section 5.5).

Modular, distributed, and concurrent systems can naturally be modeled and statistically
model checked using the modularized actor model. The modular actor model is later used
as a foundation of the specifications in the Chapters 6 and 7.

75

5. A Modularized Actor Model for Statistical Model Checking

5.1. Introduction to the Actor Model of Computation

The actor model of computation [61, 60, 2] is a mathematical model of concurrent com-
putation in distributed systems. The main building blocks of a distributed system in the
actor model are, as its name suggests, actors. Similar to the object-oriented programming
paradigm, in which the philosophy that everything is on object is adopted, the actor model
follows the paradigm that everything is an actor. An actor is a concurrent object that en-
capsulates a state and can be addressed using a unique name. Actors can communicate with
each other using asynchronous messages. Upon receiving a message, an actor can change its
state and can send messages to other actors. Actors can be used to model and reason about
distributed and concurrent systems in a natural way.

The following example demonstrates the usefulness of the actor model in modelling dis-
tributed and concurrent systems.

Example 5.1: Mutual Exclusion using a Tuple Space like Server
In this example we specify a simple mutual exclusion algorithm based on a token requesting
mechanism. Thereby, the token is stored in a server in a structure which is comparable to
a tuple space. Clients are required to possess the token to enter their critical sections. We
model both — the clients and the server as actors. The server has a unique address and its
state consists of a boolean flag, which indicates whether it possesses the token or not. As
with the server, each of the clients has a unique address and enters a competition to get the
token. After leaving its critical section (which, in our model, happens instantaneously after
having entered), the clients send the token back to the server and repeatedly try to enter
their critical sections. Figure 5.1 gives an overview of the interaction between the server and
the clients. In the figure, actors are represented by circles and messages are represented by
directed arrows.

Stoken=1

C1 C2

token? token?

(a) Clients requesting the to-
ken from the server

Stoken=0

C1 C2

token!

(b) C1 gets the token

Stoken=0

C1 C2

token!

(c) Server gets the token

Stoken=1

C1 C2

token!

(d) C2 gets the token

Stoken=0

C1 C2

token!

(e) Server gets the token

Stoken=1

C1 C2

token? token?

(f) Clients requesting the to-
ken from the server

Figure 5.1.: Mutual exclusion with a tuple-space like server

The two types of actors in our example are represented by the sorts

sort Client .

76

5.1. Introduction to the Actor Model of Computation

and

sort Server .

Additionally, the sorts and the operator

sort Contents .

sort Message .

op [_<-_] : Nat Contents -> Message .

declare the contents of a message and a message itself. Terms of the sort Message are con-
structed using an identifier (the identifier of the receiver of the message) and a term of the
sort Contents (the contents or body of the message). The operators

op request : -> Contents .

op token? : Nat -> Contents .

op token! : -> Contents .

are used as message contents within this model. The message [A <- request], which a client
sends to itself, triggers the client to request the token from the server S by sending the
message [S <- token?(A)] to the server. The server (with identifier S) replies with a message
of the form [A <- token!]. The token is sent back from a client by sending a [S <- token!]

message to the server. Both, actors and messages are part of an associative and commutative
multiset of the sort Config called a configuration. Such a configuration can be thought of as
a soup with the actors and messages being its ingredients.

sort Config .

subsorts Client Server Message < Config .

op __ : Config Config -> Config [assoc comm] .

Clients are constructed using the operator

op <_|server:_> : Nat Nat -> Client .

which takes a unique identifier and the unique identifier of the server as arguments. In our
example, we represent these unique identifiers with terms of the sort Nat. Similarly, a server
is constructed with the operator

op <_|token:_> : Nat Bool -> Server .

which takes a unique identifier and a boolean flag, which indicates whether it possesses the
token, as argument. Finally, the operator

op initState : -> Config .

eq initState =

< 0 | token: true > < 1 | server: 0 > < 2 | server: 0 >

[1 <- request] [2 <- request] .

represents the initial state of the system. Initially, the system consists of one server and two
clients. Additionally, the two messages [1 <- request] and [2 <- request] are present in the
system. The messages trigger the two clients to start their specified behavior. The dynamic
aspects of the system are declared by the following rewrite rules. For their declaration, the
variables

vars A S : Nat .

77

5. A Modularized Actor Model for Statistical Model Checking

are used. A is used as the unique identifier of the client and S as the unique identifier of the
server. The rewrite rule

rl [Client-sends-request] :

< A | server:S >

[A <- request]

=>

< A | server:S >

[S <- token?(A)] .

specifies the initial behavior of a client. Upon receiving a message of the form [A <- request],
a client sends the message [S <- token?(A)], which contains its identifier, to the server. The
rewrite rule

rl [Client-receives-token] :

< A | server:S >

[A <- token!]

=>

< A | server:S >

[S <- token!]

[A <- request] .

specifies that when a client receives the token from the server, it directly sends the token
back to the server. Additionally, it sends a message to itself. The self-addressed message
causes the client to repeatedly request the token from the server. The two rewrite rules

rl [Server-receives-token-request] :

< S | token: true >

[S <- token?(A)]

=>

< S | token: false >

[A <- token!] .

and

rl [Server-get-the-token-back] :

< S | token: false >

[S <- token!]

=>

< S | token: true > .

specify the behavior of the server. If the server has the token (the token flag is true) and
receives a [S <- token?(A)] message, it sends a [A <- token!] message to the client and changes
its token flag to false. When a server, by receiving a [S <- token!] message, gets the token
back from a client, it sets its token flag to true.

The example above shows that distributed and concurrent systems can naturally be mod-
elled using a model based on actors and message-passing communication. In the following,
we introduce a Maude-based specification of the actor model that has originally been pre-
sented in [9].

5.1.1. A Maude-based Specification of the Actor Model

The main entities of the actor model — actors and messages — are represented by the sorts

sort Actor .

sort Msg .

78

5.1. Introduction to the Actor Model of Computation

Config

Object

Actor Msg

Figure 5.2.: Subsort Hierarchy of the Actor Model

and float around in a flat soup of the sort

sort Config .

The sort

sort Object .

is a supersort for single terms of the sorts Actor and Msg, which in turn are a subsort of the
sort Config. This subsort-relationship is expressed by

subsorts Actor Msg < Object < Config .

and is depicted in Figure 5.2. Terms of the sort Config can be concatenated using the
associative and commutative operator

op __ : Config Config -> Config [assoc comm id: nil] .

for which the constant operator nil acts as an identity. The sorts

sort ActorName .

sort Contents .

represent unique identifiers for actors (of the sort ActorName) and contents of messages (of
the sort Contents). Messages are created using the constructor

op _<-_ : ActorName Contents -> Msg [ctor] .

which takes the name of the actor to whom the message is sent to and message contents as
arguments. Actors are constructed using the operator

op <name:_|_> : ActorName AttributeSet -> Actor [ctor] .

which takes the unique name of the actor and a term of the sort AttributeSet as arguments.
The sorts

sort Attribute .

and

sort AttributeSet .

are used to encode the internal state of an actor in a flexible way. Terms of sort AttributeSet

can be constructed using the associative and commutative concatenation operator

op _,_ : AttributeSet AttributeSet -> AttributeSet [assoc comm] .

The operators for the the sort Attribute are user-definable and thereby allow for a flexible
way of encoding the state of the actor.

79

5. A Modularized Actor Model for Statistical Model Checking

5.2. Introduction to Statistical Model Checking

At a high level, statistical model checking records the evaluations on several runs of an
executable model with respect to some property and uses the recordings to obtain an overall
estimate of such a property. The recordings of the property evaluations on the system runs
are thereby often referred to as samples. In the following, we first introduce probabilistic
rewrite theories that allow for the specification of probabilistic models. Next, we present
and discuss actor models based on a Maude-based implementation of probabilistic rewrite
theories. Finally, we show how the model checker PVeStA [8], a version of VeStA [98] which
heavily exploits parallelism, can be used to statistically analyze Maude models that are
based on the aforementioned actor models.

5.2.1. Probabilistic Rewrite Theories

Many realistic systems possess a probabilistic nature. To specify the indeterminacy of such
systems, rewrite theories have been generalized to probabilistic rewrite theories [68, 67, 5].
For example, in distributed and parallel systems, the exact time duration of an action
highly depends on various factors (e.g. scheduling, network delays, processing times, etc.)
and can be modeled as a stochastic process. In contrast to standard non-deterministic
model-checkers which always provide absolute guarantees about a property, properties that
are statistically model checked in a probabilistic system are checked up to a certain level of
statistical confidence (which does not necessarily have to be equal to 1). This sacrifice in
confidence is compensated for by the higher scalability of analyzable models and the ability
to analyse quantitative properties (e.g. availability) of a system.

Rules in probabilistic rewrite theories are called probabilistic rewrite rules and are of the
form:

l : t(~x)→ t′(~x, ~y) if cond(~x) with probability ~y := π(~x)

Intuitively, a probabilistic rewrite rule of this form behaves like a conditional rewrite rule,
with the difference being, that the next state is not uniquely determined. It depends on the
choice of an additional substitution ρ for the variables ~y. ρ is chosen according to the family
of probability functions π(θ): one function for each matching substitution θ of the variables
~x.

In [5], Agha et al. introduced PMaude, a specification language for modelling probabilis-
tic, concurrent, and distributed systems. Additionally, tool support to run discrete-event
simulations of PMaude models and for the statistical analysis of resulting samples of the
simulations is provided. Example 5.2 illustrates the use of probabilistic rewrite rules by
means of a simple example in PMaude. In the example, a client is connected to a server
via an unreliable channel.

Example 5.2: Modelling a lossy channel
In this example, two entities, a server and a client, communicate via an unreliable channel.
The channel is lossy and drops packets at a rate that is governed by a Bernoulli distribution.

The three operators

op S : -> ActorName .

op C : -> ActorName .

op CH : -> ActorName .

80

5.2. Introduction to Statistical Model Checking

define the actor names of the server, the client, and the channel. The operators

op generate : -> Contents .

op msg : -> Contents .

are used as contents of the messages that are being sent in the system. Messages of the
form (C <- generate) are sent by the client to itself to repeatedly generate messages of the
form (CH <- msg). These generated messages are being sent to the server by the client. The
attribute

op cnt:_ : Nat -> Attribute .

is used to count the sent messages on the client side, and to count the arrived messages on
the server side. The dynamic behavior of the system is defined by the following rewrite rules
in which the variables

var N : Nat .

var B : Bool .

are used. The variable N is used by the cnt:_ attribute and the variable B is used by PMaude

conditions. The rule

rl [Client-generating-messages] :

<name: C | cnt: N >

(C <- generate)

=>

<name: C | cnt: N+1 >

(CH <- msg)

(C <- generate) .

generates messages at the client side. The rule

rl [Server-receiving-messages] :

<name: S | cnt: N >

(S <- msg)

=>

<name: S | cnt: N + 1 > .

consumes the arrived messages at the server side. Finally, the rule

rl [Channel-forwarding-msg-or-drop] :

<name: CH | cnt: N >

(CH <- msg)

=>

<name: CH | cnt: N + 1 >

if B then

(S <- msg)

else

--- drop packet but keep the channel.

fi

with probability B := BERNOULLI(N
1000

) .

specifies the behavior of the channel, which drops or forwards the messages from the client to
the server. Whether a message is forwarded or dropped depends on the value of the variable
B. The binary variable B is distributed according to a Bernoulli distribution with mean N

1000 .
Hence on the long run, the proportion of times B is true and a message is forwarded relative
to the total number of packets sent by clients will approximate N

1000 .

81

5. A Modularized Actor Model for Statistical Model Checking

The execution of a PMaude module such as the one defined above requires the module to
be transformed into a corresponding Maude module, which then simulates its behavior. In
[5], this transformation is provided by a PMaude specification using the actor model. The
actor model was chosen for the specification, because it allows for an intuitive way to avoid
unquantified non-determinism. The absence of (un-quantified) non-determinism is the key
requirement for statistical model checking of such systems [97, 96].

5.2.2. Maude specification of Actor PMaude

As mentioned before, the key requirement for the proposed statistical model checking is the
absence of un-quantified non-determinism. In PMaude, Agha et al. present an approach
to avoid un-quantified non-determinism. In [9], AlTurki et al. present a slightly different
approach to achieve the same goal. In the following we present and compare the two ap-
proaches.

Approach 1: (Original PMaude)

In addition to the basic actor model, a notion of stochastic real-time is introduced to capture
the dynamics of various elements of a system. For example, message passing and computa-
tions that are triggered by a message may take some positive real-valued time. To model
stochastic real-time associated with message passing delay or actor computation, an actor or
a message can be made inactive up to a given global time by enclosing it in square brackets.
The sort

sort ScheduleObject .

represents an inactive object that is waiting to become active. A scheduled object is con-
structed by the operator

op [_,_] : PosReal Object -> ScheduleObject .

that makes an object inactive until the global time has advanced to the specified activation
time. The subsort relationship

subsorts PosReal ScheduleObject < Config .

enables terms of the sorts ScheduleObject and PosReal to float in the global soup of the sort
Config. The latter is used to have one term in the global soup that represents the global
time.

The global state of a system is represented by a term of the sort Config, which contains
objects, scheduled objects, and a global time (a term of the sort PosReal).

Approach 2: (Scheduler-based)

In [9], AlTurki et al. developed an approach based on a scheduler. The scheduler contains a
list of messages and is part of the configuration. The sorts

sort Scheduler .

sort ScheduleElem .

sort ScheduleList .

define the scheduler, elements that are stored within the scheduler, and a list of such ele-
ments. The subsort relationships

82

5.2. Introduction to Statistical Model Checking

subsort Scheduler < Config .

subsort ScheduleElem < ScheduleList .

state that the scheduler is part of the global configuration, and that a list of schedule elements
consists of single terms of the sort ScheduleElem. As with the previous approach, a notion of
stochastic real-time is introduced. Thus, a term of the sort ScheduleElem is constructed using
the operator

op [_,_,_] : Float Msg Nat -> ScheduleElem .

which takes three arguments: a timestamp that indicates the time when the message should
be made active in the system, the message itself, and an additional flag which is used to
provide a notion for lossy channels. The associative operator

op _;_ : ScheduleList ScheduleList -> ScheduleList [assoc id: nil] .

is used to concatenate terms of the sort ScheduleList with the constant operator

op nil : -> ScheduleList .

acting as the identity. A scheduler is a term that is built using the operator

op {_|_} : Float ScheduleList -> Scheduler .

which takes a term of sort Float, the global time of the system, and a term of sort ScheduleList

, the list of scheduled messages, as arguments. Messages in the scheduler’s list are ordered
according to their scheduled time of activation. The operator

op insert : Scheduler ScheduleElem -> Scheduler .

inserts a given scheduled message into the list of scheduled messages and preserves the timely
order of the list items. The operator

op mytick : Scheduler -> Config .

removes the first message, i.e., the message which is to be activated next, from the scheduler,
updates the global time of the scheduler, and returns the message together with the updated
scheduler.

The global state is similar to the one in the first approach. The state is represented by a
term of sort Config, which contains objects and one term of the sort Scheduler.

Similarities

In [5], a special tick rule is defined and is used in both approaches. A one-step computation
rule of an actor in the PMaude model is defined as a transition of the form

[u]A
¬tick
−−−→

∗

[v]A
tick
−−→ [w]A

where

(i) [u]A is a canonical term of sort Config, representing the global state of a system.

(ii) [v]A is a term obtained after a sequence (zero or more) of one-step rewrites such that

• in none of those rewrites is the tick rule applied, and

• [v]A cannot be further rewritten by applying any rule except the tick rule.

83

5. A Modularized Actor Model for Statistical Model Checking

(iii) [w]A is obtained after a one-step rewrite of [v]A by applying the tick rule, which does
the following

• finds and removes the scheduled object, if one existst, with the smallest global
time, say [T’, Obj], from the term [v]A to a term, say [v′]A,

• adds the term Obj to [v′]A through multiset union to get the term [v′′]A, and

• replaces the global time of the term [v′′]A with T’ to get the final term [w]A.

The absence of un-quantified non-determinism

In the original PMaude paper [5], sufficient requirements for the absence of unquantified
non-determinism in an actor PMaude specification are presented. A PMaude specification
fulfills the requirement, if

1. the initial global state of the system or the initial configuration can have at most one
non scheduled message.

2. the computation performed by any actor after receiving a message must have no un-
quantified non-determinism; however, there may be probabilistic choices.

3. the messages produced by an actor in a particular computation (i.e., when receiving
a message) can have at most one non scheduled message.

4. no two scheduled objects can become active at the same global time.

The last requirement is the one that should be ensured by the actor model. The actor
PMaude model ensures this by associating continuous probability distributions with mes-
sage delays and computation time. This approach relies on the fact, that for continuous
distributions the probability of sampling the same real number twice is zero. The second
approach ensures the last requirement by transferring the control on when a message be-
comes active to the scheduler. The scheduler emits the messages in the right order, which
is deterministic for a fixed probability distribution, and ensures that only one message is
active in the system at any point in time.

Comparison

The correctness of the first approach relies on the fact that no two scheduled objects [R1, O1]

and [R2, O2] are scheduled to become active at the same time, i.e., for any to times R1, R2 in
the scheduler the equation R1 6= R2 always holds. This is achieved by associating continuous
probability distributions with the scheduling times of objects in the scheduler. However,
even though this assumption might hold for the real world, an infinite precision for time
measurement and time representation is unachievable in a computerized model.

The second approach eliminates this shortcoming by using a scheduler. A message can be
inserted into a schedule in order to become active after a fixed or random amount of time.

Example 5.3 illustrates the difference between the two approaches using the client server
setting from Example 5.2.

Example 5.3: Practical differences between the two approaches
In both approaches, the operators

84

5.2. Introduction to Statistical Model Checking

op S : -> ActorName .

op C : -> ActorName .

op CH : -> ActorName .

op generate : -> Contents .

op msg : -> Contents .

op cnt:_ : Nat -> Attribute .

are used. In Example 5.2, these operators are explained in more detail. The subtle difference
between the aforementioned approaches lies in the way how messages are emitted.

Approach 1: (Original PMaude solution) The first approach relies on the fact that
two scheduled object [T1, O1] and [T2, O2] with T1 = T2 are never present in the global
state of the system at any point in time. To emit new messages, the times for the scheduled
objects have to be chosen randomly. Following this approach, the resulting model has no
un-quantified non-determinism, since it meets the conditions given in Section 5.2.2.

In the following, the variables

var N : Nat .

var B : Bool .

var T : PosReal .

are used, where the variable N is used together with the cnt:_ attribute and the variable T is
used to represent the global time of the system.

The rules

rl [Client-generating-messages] :

<name: C | cnt: N >

(C <- generate)

T

=>

<name: C | cnt: N+1 >

[T + EXPONENTIAL(0.2), CH <- msg]

[T + EXPONENTIAL(0.2), C <- generate]

T .

rl [Server-receiving-messages] :

<name: S | cnt: N >

(S <- msg)

T

=>

<name: S | cnt: N + 1 > T .

rl [Channel-forwarding-msg-or-drop] :

<name: CH | cnt: N >

(CH <- msg)

T

=>

<name: CH | cnt: N + 1 >

if BERNOULLI(N
1000

) then

[T + EXPONENTIAL(0.2), S <- msg]

else

--- drop packet!

fi

T .

85

5. A Modularized Actor Model for Statistical Model Checking

specify the dynamic aspects of the system. Messages are emitted as terms of the sort
ScheduleObject and the term EXPONENTIAL(0.2) rewrites to a randomly chosen real number
sampled from the exponential distribution with parameter 0.2.

Approach 2: (Scheduler-based solution) The second approach ensures the absence
of un-quantified non-determinism by using a scheduler. All messages that are emitted have
to be inserted into the scheduler. In contrast to the first approach, the time when a mes-
sage should become active can be chosen without any restrictions. As thus, no additional
randomness is introduced in the model.

In the following, the variables

var N : Nat .

var gt : Float .

var SL : ScheduleList .

are used, where the variable N is used together with the cnt:_ attribute, the variable gt

represents the global time, and the variable SL represents the list of scheduled messages of
the scheduler. The rules

rl [Client-generating-messages] :

<name: C | cnt: N >

(C <- generate)

{ gt | SL }

=>

<name: C | cnt: N+1 >

insert(insert({ gt | SL }, [gt + 0.1, CH <- msg]), [gt + 0.1, C <- generate]) .

rl [Server-receiving-messages] :

<name: S | cnt: N >

(S <- msg)

=>

<name: S | cnt: N + 1 > .

rl [Channel-forwarding-msg-or-drop] :

<name: CH | cnt: N >

(CH <- msg)

{ gt | SL }

=>

<name: CH | cnt: N + 1 >

if BERNOULLI(N
1000

) then

insert({ gt | SL }, [gt + 0.1, S <- msg])

else

--- drop packet!

{ gt | SL }

fi .

define the dynamic aspects of the system, whereby new messages are inserted in the scheduler
using the insert operator.

5.2.3. Statistical Analysis using the PVeStA model checker

In [97], Sen et. al. describe an algorithm for statistical model checking based on simple
hypothesis testing. Formulas in Probabilistic CTL (PCTL) [59] and Continuous Stochastic
Logic (CSL) [20, 21] can be model checked using this algorithm. PCTL is an extension

86

5.2. Introduction to Statistical Model Checking

Q ::= D eval E[PExp];

D ::= set of Defn

Defn ::= N(x1, . . . , xm) = PExp;

SExp ::= c | f | F (SExp1, . . . , SExpk) | xi

PExp ::= SExp | © N(SExp1, . . . , SExpn)

| if SExp then PExp1 else PExp2 fi

Figure 5.3.: Syntax of QuaTEx

of standard CTL, which associates probability measure to computation paths and qualifies
temporal logic formulas with probability bounds. CSL further extends PCTL by continuous
timing and qualifies temporal logic operators by time bounds. In [5], Agha et. al. general-
ize PCTL and CSL to Quantitative Temporal Expressions (QuaTEx) in order to be able
to express quantitative properties, as for instance the latency of a system. In QuaTEx,
state formulas and path formulas are extended to real-valued state expressions and path
expressions.

QuaTEx

The syntax of QuaTEx is shown in Figure 5.3. A QuaTEx query Q consists of a set of
definitions D, followed by a query about the expected value of a path expression PExp.
A definition Defn ∈ D defines a temporal operator with name N , and a set of formal
parameters on the left-hand side. The right-hand side consists of a path expression. If a
temporal operator is used in a path expression, the formal parameters are replaced by state
expressions. A state expression SExp can be a constant c, a function f which maps a state
to a concrete value, a function F , that maps k state expressions to a state expression, or
a formal parameter. A path expression PExp is either a state expression, a next operator
followed by the application of a temporal operator N , that is defined in D, or a conditional
expression.

We omit the specification of the semantics of QuaTEx for the sake of brevity here, but
explain the use of QuaTEx by the following example. We refer the interested reader to [5].

Example 5.4: QuaTEx by example
This example is based on the aforementioned example, in which a server and a client are
connected via a lossy channel. The statistical property we are interested in is the probability
that along a random path from a given state, the client C sends a message (that is not
dropped) to the server S within the first 1.0 time units.

This can be expressed by the following QuaTEx expression:

IfReceivedInTime(t) =

if t > time() then

0

else

if msgReceived() then

87

5. A Modularized Actor Model for Statistical Model Checking

1

else

© (IfReceivedInTime(t))

fi

fi;

eval E[IfReceivedInTime(time() + 1.0)];

First, the temporal operator IfReceivedInTime is defined, which returns 1, if the server re-
ceived a message (the state function msgReceived returns true on a state) along an execution
path within time t. Otherwise, it returns 0. Here, the state function time() returns the
global time associated with the state. Finally, the state query eval E[IfReceivedInTime(time

()+ 1.0)] returns the expected number of times a message is received at the server S within
the first 1.0 time units. This number lies in [0, 1], since along a random path the temporal
operator IfReceivedInTime either returns 0 or 1. The expected value is in fact equal to the
probability that the server receives a message along a random path from the given state
within the first 1.0 time units.

Statistical evaluation of QuaTEx expressions (VeStA/PVeStA)

A QuaTEx expression is evaluated on the initial state of a model. The expected value of
the expression is statistically evaluated by the approximation of the value by the mean of n
samples such that the size of the confidence interval (1 − α) [64] for the expected value is
bounded by δ.

In [5], Agha et. al. implemented the evaluator VeStA for QuaTEx properties in Java.
VeStA takes an actor PMaude model, an initial actor PMaude term that represents the
initial configuration of the system, and a QuaTEx expression (with the two parameters α
and δ) as arguments.

The Maude interpreter is used to perform discrete-event simulations. VeSta maintains
the current configuration of the system as a Java string and VeSta passes the current
configuration to the Maude interpreter that performs a one-step computation at every sim-
ulation step. The result is stored as the next configuration. Using this approach, QuaTEx

expressions can be evaluated using the Maude one-step computation as the next operator.
In [8], AlTurki and Meseguer present PVeSta, an extension and parallelization of the

VeStA statistical model checking tool. It supports statistical model checking of discrete
or continuous Markov Chains or of probabilistic rewrite theories in Maude. Properties can
thereby be expressed in either PCTL/CSL or QuaTEx. PVeStA also provides a scalable
performance through a parallelized generation of samples. In Section 5.6, we explain how
PVeStA can be used for statistical model checking and quantitative analysis of QuaTEx

properties of models based on the extended actor model, which is presented in the following.

5.3. Introduction to the Reflective Russian Dolls Model

In some situations, the state of a distributed system can be thought of as a flat configuration
which contains objects and messages. Such a flat configuration can be modelled as a flat soup
that consists of actors and messages. The actors in the soup communicate via asynchronous
message passing or synchronous interactions.

88

5.3. Introduction to the Reflective Russian Dolls Model

firewall

sub-system

C1
. . . CN

M

M ′

M ′′

Figure 5.4.: Example of a Russian doll model of a system with boundaries

As a distributed system becomes more complex, hierarchies may have to be introduced
to represent the structure of the system and its communication patterns. Furthermore, if
hierarchies are not modeled, the distance between the system and a model of it might become
bigger. For example, the Internet, the most widely used distributed system, inherently is a
hierarchical system of nested systems. Trying to model the Internet as a flat system will not
reflect its characteristics. Consequently, the distance between the model and the real system
becomes a major issue. Additionally, a flat model does not reflect boundaries of systems.
In a flat model, every participant can communicate with everybody else. However, some
concepts, like a firewall, rely on the existence of physical boundaries that messages from the
outside have to cross in order to reach destinations within a border.

In [78], Meseguer and Talcott present the Reflective Russian Dolls (RRD) model which
extends and formalizes previous work on actor reflection and provides a generic formal
model of distributed object reflection. The rewriting-logic based model combines logical
reflection and hierarchical structuring. In their model, the state of a distributed system is
not represented by a flat soup, but rather as a soup of soups, each enclosed within specific
boundaries. As with traditional Russian dolls, soups can be nested up to an arbitrary depth.

Figure 5.4 illustrates the basic idea using a system that is guarded by a firewall. Each of
the boxes represents a system. The firewall consists of a subsystem which itself is composed
of several components C1 . . . CN . Message M is addressed to the innermost component C1

and as such has to pass the boundary of the firewall. The firewall possibly transforms the
message to M ′ (e.g. tags a message with a security clearance). After that, the boundary of
the sub-system has to be crossed which, respectively, can also alter the message to M ′′.

Mathematically, this can be modelled by boundary operators of the form

b : s1, . . . , sn, Configuration→ Configuration

where s1, . . . , sn are additional sorts. These sorts are called the parameters of the boundary
operator. Boundary operators encapsulate a configuration together with several parameters,
and as with Russian dolls, they can be nested arbitrarily.

Using the Russian Dolls model, sophisticated distributed systems, that rely on system
boundaries, can be modeled [78].

89

5. A Modularized Actor Model for Statistical Model Checking

0

. . .

0.0
. . .

0.1

1

. . .

1.0

[A1,[t1,Message1]]

[A2,[t2,Message2]]

[A3,[t3,Message3]]

...

Figure 5.5.: Basic overview of the modularized actor model

5.4. The Modularized Actor Model

Previous approaches to statistical model checking of actor systems rely on a flat model.
Neither of the two models presented in Section 5.2 can handle models based on the RRD. In
the following, an extension to the actor model of Section 5.1 is presented, which incorporates
the Russian dolls model. Additionally, the scheduling approach by AlTurki et al. is enhanced
with support for multiple levels of Russian dolls actors in a way which preserves the guarantee
for the absence of unquantified non-determinism. Modularity is intrinsically supported, since
rewrite rules in specifications that use the modularized actor model remain local, i.e., they
remain without any knowledge of the outside environment or of how they are used. Chapters
6 and 7 use the modularized actor model as a basic building block.

The actor model can easily be extended to support the RRD model by allowing an actor
to contain a soup of objects. Similarly to the approach of AlTurki et al., a scheduler at
the highest level of the actor-hierarchy is used to guarantee the absence of unquantified
non-determinism. Furthermore, a hierarchical naming scheme is introduced, which allows
for the automatic generation of fresh names. Messages can be emitted at any level and
are automatically inserted into the scheduler. For messages that are scheduled to become
active, the approach automatically inserts the messages in the configuration. The messages
are thereby put into the subconfiguration were they have emitted. Messages only cross
boundaries through boundary crossing rewrite rules.

Figure 5.5 illustrates the extended actor model. The top-level configuration consists of
two Russian dolls actors and the scheduler. The actors have the unique addresses 0 and
1. Both actors themselves contain actors and a name-generator (symbolized as a diamond)
in their sub-configurations. The scheduler contains three messages, Message1, Message2,
and Message3 with timestamps t1, t2, and t3. Messages in the scheduler’s list are ordered
according to their scheduled time of activation, thus t1 < t2 < t3.

5.4.1. The Hierarchical Addressing Scheme

Figure 5.6 shows an example of how the hierarchical naming scheme is used. It builds a
naming tree, in which childrens’ addresses are composed of their parent’s address and a
number. The number is chosen according to the order in which the children are created.
The top of the tree has the constant address toplevel, which is omitted in its childrens’
addresses.

Hierarchical addresses are terms of the sort

sort Address .

90

5.4. The Modularized Actor Model

toplevel

0 1

0.0 0.1

Figure 5.6.: Exemplary usage of the hierarchical naming scheme

while first-level addresses are represented by terms of the sort Nat. The subsort relationship

subsort Nat < Address .

states that a single natural number represents a term of the sort Address. The associative
operator

op _._ : Address Address -> Address [assoc prec 10] .

concatenates terms of the sort Address. The two operators

op _<_ : Address Address -> Bool [ditto] .

and

op |_| : Address -> Nat .

define, respectively, a lexicographic ordering over the addresses and a length operator and
have fairly obvious defining equations. Additionally, the constant operator

op toplevel : -> Address .

is defined to represent the root of the address-tree.

5.4.2. The Actor Model and the Name Generator

Terms of sort

sort Contents .

represent the contents of a message that is being sent within the system. The modularized
actor model defines five different types of messages:

• Terms of sort Msg consist of a term of the sort Contents that is sent to a specific address.

sort Msg .

op _<-_ : Address Contents -> Msg .

• Terms of sort ActiveMsg represent active messages in the system. An active message
is a message that can be consumed by an actor using a rewrite rule. Active messages
are constructed using the operator {_,_} which takes the current global time and an
actual message as arguments.

sort ActiveMsg .

subsort ActiveMsg < Config .

op {_,_} : Float Msg -> ActiveMsg .

91

5. A Modularized Actor Model for Statistical Model Checking

• Terms of sort ScheduleMsg represent scheduled messages, i.e., messages which are emit-
ted by a rewrite rule and will be inserted into the scheduler. Scheduled messages
contain the global time at which the message is made active (which has to be greater
or equal than the current global time) and an actual message. Terms of sort ScheduleMsg

are the only messages that an actor is allowed to emit.

sort ScheduleMsg .

subsort ScheduleMsg < Config .

op [_,_] : Float Msg -> ScheduleMsg .

• Terms of sort LocActiveMsg enclose an active message and the address of the configu-
ration where the active message is inserted when it is made active. This is an inter-
mediary message type that is used to internally push active messages down to their
respective destinations.

sort LocActiveMsg .

subsort LocActiveMsg < Config .

op {_,_} : Address ActiveMsg -> LocActiveMsg .

• Similar to terms of sort LocActiveMsg, terms of sort LocScheduleMsg enclose scheduled
messages and the address of the configuration where they have originally been emitted.
This is an intermediary message type which is used to pull scheduled messages up to
the scheduler and store them until they are made active.

sort LocScheduleMsg .

subsort LocScheduleMsg < Config .

op [_,_] : Address ScheduleMsg -> LocScheduleMsg .

The sorts

sort Actor .

sort ActorType .

sort AttributeSet .

declare actors, the type of an actor, and a set of attributes. The type of the actor can be
thought of as the type of an object in object-oriented programming. A term of the sort
actor is created using the operator

op <_:_|_> : Address ActorType AttributeSet -> Actor .

which takes a unique address, the type (that is the class) of the actor, and a set of attributes
representing the internal state of the actor as arguments. The state of the actor is encoded
in a set of attributes in the same way as in the actor model. Russian doll actors — actors
that contain a soup themselves — are of sort Actor and furthermore contain the attribute

op config:_ : Config -> Attribute [gather(&)] .

in their set of attributes. The inner configuration of a Russian dolls actor (a term of the
sort Config) is stored within this attribute. Terms of sort

sort NameGenerator .

specify name generators. The operator

op <_> : Address -> NameGenerator .

92

5.4. The Modularized Actor Model

constructs a name generator. A name generator contains a new fresh address as an argument.
This address can be extracted from the name generator using the operator

op _.new : NameGenerator -> Address .

The operator

op _.next : NameGenerator -> NameGenerator .

creates a fresh name for a name generator. After having created a new address using the
operator _.new, it is necessary to replace the name generator with the name generator that
is returned by the operator _.next in order to get a new address again. Terms of sort

sort Config .

constitute a configuration which may contain all kinds of messages, flat actors, Russian doll
actors, and at most one name generator at its top level. The scheduling algorithm requires
that all scheduled messages are inserted in the scheduler, and that all active messages are
consumed by rewrite rules before a new message is made active. Thus, a mechanism to
differentiate between configurations, that contain active or scheduled messages, and config-
urations that do not contain such messages, is needed. The sorts

sort InertActor .

sort ActorConfig .

serve this purpose. A term of sort ActorConfig is a configuration that contains no active
or scheduled messages. A term of sort InertActor is an actor that is either flat, or its
configuration is of sort ActorConfig. The subsort relationships

subsorts Actor ActorConfig < Config .

subsort InertActor < Actor .

subsort NameGenerator InertActor < ActorConfig .

subsort Attribute < AttributeSet .

are illustrated in Figure 5.7. Terms of the sorts ActiveMsg, ScheduleMsg, LocActiveMsg, and
LocScheduleMsg are subsorts of sort Config. Terms of the sort ActorConfig are a specialization
of the sort Config. Thus, ActorConfig is a subsort of Config. InertActor is a subsort of both,
the sort Actor and the sort ActorConfig. The sort Actor is a subsort of Config, since it is
possibly a Russian doll actor which may contain an active or scheduled message within its
configuration. The conditional membership

cmb ACT : InertActor if flatActor(ACT).

states that an actor is of the sort InertActor, if it is a flat actor. The operator

op flatActor : Actor -> Bool .

determines if an actor is a flat actor. In the following definition, the variables

var ACT : Actor .

var A : Address .

var T : ActorType .

var C : Config .

var AS : AttributeSet.

are used. The operator is defined by the equations

eq flatActor(< A : T | config: C, AS >) = false .

eq flatActor(ACT) = true [owise] .

93

5. A Modularized Actor Model for Statistical Model Checking

Config

ActorActorConfig

ScheduleMsg
ActiveMsg

LocScheduleMsg
LocActiveMsg

InertActorNameGenerator

Figure 5.7.: Subsort Hierarchy of the Extended Actor Model

which specify that a flat actor is an actor that does not contain a config:_ attribute. The
membership1

mb < A : T | config: AC, AS > : InertActor .

states that if the configuration of an actor is of sort ActorConfig, then the actor is also of
sort ActorConfig. Finally, the operators

op null : -> ActorConfig .

op __ : ActorConfig ActorConfig -> ActorConfig [assoc comm id: null] .

op __ : Config Config -> Config [assoc comm id: null] .

define the associative and commutative composition of terms of sort ActorConfig and of sort
Config.

5.5. Multi-level scheduling for the Modularized Actor Model

Figure 5.8 shows a schematic overview of the scheduling approach. The scheduling approach
for a scheduled messages consists of two phases:

1. When a scheduled message is emitted at a specific level in the actor hierarchy, it is
pulled up to the top-most level and is inserted into the scheduler. Internally, the
scheduled message is thereby first wrapped by a term of the sort LocScheduleMsg which,
in addition to the message, stores the address of the actor in whose configuration the
message was emitted. Then, the message is pulled up until it is located at the top-most
level. Finally, it is inserted into the scheduler at the correct position.

2. When a scheduled message is scheduled to be active, it is pushed down to the configu-
ration where it was emitted and is inserted there as an active message. Internally, the
scheduled message is thereby removed from the scheduler and inserted in the top-most
configuration as a term of the sort LocActiveMsg. Since the address of the actor, in
whose configuration the message was emitted, is known, and the hierarchical address-
ing scheme is used, the message can be pushed down to its destination easily 2. When
the destination configuration is reached, the wrapped term of the sort ActiveMsg is
emitted in the configuration.

1For simplicity we assume that: the only attribute whose value is a configuration is the config attribute,
so that no other attributes of an object can contain configurations as their values.

2There is a solution which allows for any naming scheme that prevents the collision of names to be used:
While pulling the message up, the names of the actors on the path up to the top-level are collected in
an ordered list that represents the path. In order to put a message back into the configuration in which
it was emitted, this path is traversed in the reverse order.

94

5.5. Multi-level scheduling for the Modularized Actor Model

0

. . .

0.0
. . .

0.1

1

. . .

1.0

[t0, 0.0←M]

[A1,[t1,Message1]]

[A2,[t2,Message2]]

[A3,[t3,Message3]]

...

(a) The actor with address 1.0 is sending a message to the address 0.0

0

. . .

0.0
. . .

0.1

1

. . .

1.0

[t0, 0.0←M]

[1, [t0, 0.0←M]]

[A1,[t1,Message1]]

[A2,[t2,Message2]]

[A3,[t3,Message3]]

(b) The message is inserted in the scheduler with a reference to the containing
actor’s address

0

. . .

0.0
. . .

0.1

1

. . .

1.0

{t0, 0.0←M}

[1, [t0, 0.0←M]]

[A1,[t1,Message1]]

[A2,[t2,Message2]]

[A3,[t3,Message3]]

(c) Once the message becomes active, the message is put back in the soup

0

. . .

0.0
. . .

0.1

1

. . .

1.0

{t0, 0.0←M}

[t0, 0.0←M]

[A1,[t1,Message1]]

[A2,[t2,Message2]]

[A3,[t3,Message3]]

...

(d) A boundary-crossing rewrite rule pushed the message one level up

0

. . .

0.0
. . .

0.1

1

. . .

1.0

[t0, 0.0←M]

[tl, [t0, 0.0←M]]

[A1,[t1,Message1]]

[A2,[t2,Message2]]

[A3,[t3,Message3]]

(e) The message is inserted in the scheduler with the reference to the topmost
level

Figure 5.8.: Schematic overview of the scheduling approach

95

5. A Modularized Actor Model for Statistical Model Checking

In the following, we present a Maude-based specification of the multi-level scheduling
approach. The following variables

vars gt t1 t2 LIMIT : Float .

vars SL SL’ : ScheduleList .

vars M1 M2 : Msg .

var S : Scheduler .

var C : Config .

vars A A’ A1 A2 : Address .

var T : ActorType .

var AS : AttributeSet .

var CO : Contents .

var AC : ActorConfig .

var SM : ScheduleMsg .

var AM : ActiveMsg .

var LSM : LocScheduleMsg .

are used in what follows.
A term of sort

sort Scheduler .

specifies the state of a scheduler in the system. The sort Scheduler is specified as a subsort
of Config

subsort Scheduler < Config .

Thus, a scheduler can be part of a configuration. The scheduler stores an ordered list of
messages of sort

sort ScheduleList .

Terms of the sort LocScheduleMsg are constructed using the constant operator

op nil : -> ScheduleList [ctor] .

and the associative concatenation operator

op _;_ : ScheduleList ScheduleList -> ScheduleList

[ctor assoc id: nil] .

for which the term nil acts as an identity. Since terms of the sort LocScheduleMsg are a
subsort of ScheduleList

subsort LocScheduleMsg < ScheduleList .

the list of messages in the scheduler consist of terms of sort LocScheduleMsg. A scheduler is
constructed by the operator

op {_|_} : Float ScheduleList -> Scheduler .

which takes the global time and a list of scheduled messages as arguments. The list items
are ordered according to their scheduled time of activation. The operators

op insert : Scheduler LocScheduleMsg -> Scheduler .

op insert : ScheduleList LocScheduleMsg -> ScheduleList .

op insertList : Scheduler ScheduleList -> Scheduler .

op insertList : ScheduleList ScheduleList -> ScheduleList .

96

5.5. Multi-level scheduling for the Modularized Actor Model

insert scheduled messages or lists of scheduled messages into the scheduler in the correct
order. In order to assure the absence of non-determinism, the order of the messages must
be deterministic (no matter in which order messages are inserted in the scheduler). The
equations

eq insert({gt | SL }, LSM) = {gt | insert(SL,LSM) } .

eq insert([A1, [t1 , M1]] ; SL , [A2, [t2 , M2]]) =

if (t1 < t2) or ((t1 == t2)) and lt(M1,M2) then

[A1, [t1 , M1]] ; insert(SL, [A2, [t2 , M2]])

else

([A2, [t2 , M2]] ; [A1, [t1 , M1]] ; SL)

fi .

eq insert(nil , [A2, [t2 , M2]]) = [A2, [t2 , M2]] .

eq insertList({gt | SL }, SL’) = {gt | insertList(SL, SL’) } .

eq insertList(SL , [A2, [t2 , M2]] ; SL’) =

insertList(insert(SL, [A2, [t2, M2]]), SL’) .

eq insertList(SL , nil) = SL .

define the behavior of the insertion operators. Messages are inserted in the order of their
scheduled time of activation. If two messages have an equal time of activation, the total
term order which is provided by Maude as a meta-level function is used to create a total
order on the two messages.

The equations

eq [create-loc-scheduled-msg1] :

< A : T | config: SM C, AS > = [A, SM] < A : T| config: C, AS > .

eq [create-loc-scheduled-msg2] :

SM C S = [toplevel, SM] C S .

eq [pull-up] :

< A : T | config: LSM C, AS > = LSM < A : T | config: C, AS > .

eq [insert-in-scheduler] :

LSM S = insert(S, LSM) .

define the semantics of the first phase of the scheduling algorithm. The equation create-loc

-scheduled-msg1 and create-loc-scheduled-msg2 enclose a term of sort ScheduleMsg in a term of
the sort LocScheduleMsg. The term is then pulled up by the equation pull-up. Finally, when
the term reaches the top-level, it is inserted into the scheduler by the equation insert-in-

scheduler.
The second phase of the scheduling algorithm is defined by the equations

eq [push-down] :

< A : T | config: C, AS > {A . A’, AM} = < A : T | config: C {A . A’, AM}, AS >

.

eq [insert-in-configuration] :

< A : T | config: C, AS > {A , AM} = < A : T | config: C AM, AS > .

eq [insert-top-level] :

{toplevel, AM } S = AM S .

When an active message enclosed in a term of sort LocActiveMsg is emitted, it is pushed
down to its originating configuration by the equation push-down. The equations insert-in-

configuration and insert-top-level insert the enclosed active message in the inner configu-
ration of an actor, or at the top-level.

97

5. A Modularized Actor Model for Statistical Model Checking

Similar to the special tick rule that is defined in [5], a one-step computation of a model
written in the modularized actor model is defined by a transition of the form

[u]A
step
−−→ [v]A →∗[w]A

where

(i) [u]A is a canonical term of sort ActorConfig, which represents the global state of a
system (and of all of its sub-systems). Since [u]A is of sort ActorConfig, there is no
active or scheduled message in the system.

(ii) [v]A is a term obtained by removing the next message from the scheduler, say [A,[T,

M]], and by inserting it into the configuration of the object at address A. Additionally,
the global time in the scheduler is changed to T.

(iii) [w]A is a term obtained after a sequence (zero or more) of one-step rewrites, until no
more active or scheduled messages are in the system.

The operator

op step : Config -> Config [iter] .

is defined by the (partial) equation

eq step(AC {gt | [A1, [t1 , M1]] ; SL})

= { A1, { t1 , M1 } } AC {t1 | SL} .

It takes the first message from the list of scheduled messages of the scheduler, sets the global
time of the scheduler to the activation time of the that message, and returns a configuration
that contains the unmodified configuration together with the updated scheduler and the
message. The operator

op run : Config Float -> Config .

is defined by the equation

eq run(AC {gt | SL}, LIMIT) =

if (gt <= LIMIT) then

run(step(AC {gt | SL}), LIMIT)

else

AC {gt | SL}

fi .

It repeatedly calls the run operator until a specified amount (denoted by the variable LIMIT)
of global time has passed.

The operator step is only defined on terms that are built using a term of sort ActorConfig

and a scheduler. Thus, a new active message is only emitted in a configuration that contains
no more active or scheduled messages. Hence, every inserted message has to be consumed,
or the step operator is not defined (i.e., it cannot proceed). This behavior is ensured by the
following steps which are taken after a message has been emitted:

• The new active message is inserted in the correct configuration. This is ensured due
to the hierarchical addressing scheme.

98

5.5. Multi-level scheduling for the Modularized Actor Model

• There is at most one rule that consumes the active message and possibly emits new
scheduled messages.

• All scheduled messages are pulled up to the top level and are inserted into the scheduler.
It is important to notice that the insertion of messages keeps a total order in the list
of the scheduler. Thereby, the sequence of insertions always results in the same list in
the scheduler (i.e., the equational system is confluent).

• The step rule emits one single new message in the top-level configuration.

In case a message cannot be consumed in step 5.5, the system reaches a final state as no
more rewrites are possible.

5.5.1. The Absence of unquantified non-determinism

The scheduler approach ensures that only one message is active at any given time. We pro-
vide a new, multi-level version of the sufficient requirements for the absence of unquantified
non-determinism given in Section 5.2.2. The requirements:

1. If Russian doll actors are used, then the inner configuration is contained in the config

:_ attribute of the actor. This guarantees that the conditional membership works
as specified and that the scheduler can insert the messages in the modularized actor
model.

2. There is at most one term of sort NameGenerator contained in each subterm of the sort
Config, i.e., each such subconfiguration has a single corresponding name generator.
This ensures that new names can uniquely and deterministically be created.

3. Addresses of actors follow the hierarchical addressing scheme.

4. The initial global state of the system has at most one active message. Otherwise,
a non-deterministic choice could be made as more than one rule could be active to
consume the messages.

5. The computation performed by each actor after receiving a message must have no
unquantified non-determinism; however, there may be probabilistic choices in the ap-
plication of an actor rewrite rule.

6. The messages produced by an actor in a particular computation (e.g., upon receiving
a message) are solely scheduled messages.

7. There is no non-determinism in the choice of rewrite rules, i.e., for each message there
is at most one rule that can be applied.

are sufficient to ensure the absence of unquantified non-determinism. Therefore, distributed
system specifications satisfying conditions (1)–(7) and having some probabilistic rewrite
rules can be formally analyzed by statistical model checking methods.

99

5. A Modularized Actor Model for Statistical Model Checking

5.6. Using PVeStA to Statistically Analyze Specifications
based on the Modularized Actor Model

As mentioned in Section 5.2.3, PVeStA can be used for statistical model checking and
quantitative analysis of probabilistic rewrite theories expressed in Maude. In this thesis,
this method is used for the formal analysis of specifications based on the extended actor
model and the SAMPLER module (see Appendix C.1). The results of these analyses are
shown in Sections 6.3.2, 6.4.3, 7.4, and 7.7.

5.6.1. The module APMAUDE

PVeStA expects the module APMAUDE in specifications it performs model checking on.

mod APMAUDE is

protecting ACTOR-MODEL .

protecting SCHEDULER .

protecting NAT .

protecting FLOAT .

var C : Config .

var gt : Float .

var SL : ScheduleList .

op initState : -> Config .

op sat : Nat Config -> Bool .

op val : Nat Config -> Float .

op getTime : Config -> Float .

eq getTime(C {gt | SL}) = gt .

op limit : -> Float .

op tick : Config -> Config .

eq tick(C) = run(C, getTime(C) + limit) .

endm

The module protects a definition of the extended actor model (module ACTOR-MODEL)
and a definition of the scheduler for the extended actor model (module SCHEDULER). It
further defines the operators initState, which is a constant operator that represents the
initial configuration, sat and val, which are used to define properties in Maude, and getTime,
which returns the global time of a configuration. The tick operator takes a configuration
and calls the run operator. The maximum time that should pass in the tick (i.e., the logical
time that the global time should advance during the run of a sample) is thereby given by
the constant limit.

5.6.2. Running PVeStA

PVeStA is a client-server application. To perform an analysis using the tool, first a server
application needs to be started on each server. The server is started using the command

java -jar pvesta-server.jar [PORT]

It is possible to start multiple servers on a single physical machine by assigning a different
port to each of the instances. The port is definable as an optional parameter. It is recom-

100

5.6. Using PVeStA to Statistically Analyze Specifications based on the Modularized
Actor Model

mendable to only start as many servers on a physical machine as CPU cores should be used
for the analysis on that machine.

The second step is to create a file that contains a list of server addresses. Addresses are
of the form IP:PORT and should be provided as a space or line separated list in the file.

Finally, the client application is started using the command

java -jar pvesta-client.jar

-m [MODEL FILE]

-f [FORMULA FILE]

[-l [SERVER LIST FILE]]

[-k [LOAD FACTOR]]

[-d1 [DELTA1]]

[-d2 [DELTA2]]

[-a [ALPHA]]

[-b [BETA]]

[-ps [STOPPING PROBABILITY]]

[-pd [DISCOUNT PROBABILITY]]

[-cs [CACHE SIZE]]

[-s [MAXIMUM SAMPLE SIZE]]

[-arg [MODEL ARGUMENT]]

For the descriptions of the application parameters we refer to [98, 8, 97] and Section 5.2.3.
If not otherwise mentioned, the results in this thesis rely on a 99% confidence interval of
size at most 0.01.

101

6 C
h

ap
te

r

Guaranteeing Stable Availability under
Distributed Denial of Service Attacks

Availability is a key quality of service property of Cloud-based services. However, such
services can easily be overwhelmed by a Distributed Denial of Service (DDoS) attack. In
this chapter, we present solutions how Cloud-based services can be made resilient to DDoS
attacks with minimum performance degradation. In the following, we:

1. give an introduction to Denial of Service attacks (Section 6.1),

2. describe the Adaptive Selective Verification (ASV) protocol (Section 6.2),

3. specify an ASV Wrapper meta-object in Maude and formally analyze a client-server
system under attack using the ASV Wrapper (Section 6.3),

4. and, finally, extend the ASV protocol with a Server Replicator meta-object (ASV++),
which exploits the Cloud’s capacity for provisioning more servers on demand, and then
formally analyze the extended protocol under various settings (Section 6.4).

The Maude specifications shown in this chapter are based on the modularized actor model
described in Chapter 5 and make use of the Russian Dolls pattern which makes the spec-
ifications, as meta-objects, highly reusable. Furthermore, the Maude specification of ASV
is adapted from [6], and the result analyses in Section 6.3, although they consider a wider
range of attack volumes than in [9], are in agreement with the model checking results in [9].

6.1. Introduction to Denial of Service Attacks

The goal of a denial of service attack is to make a service temporarily or indefinitely unavail-
able to its consumers. A common method of attacking a service is to flood the service with

103

6. Guaranteeing Stable Availability under Distributed Denial of Service Attacks

Attacker0

Attacker1

. . .

AttackerN

Service

Client0

Client1

. . .

ClientK

REQ

REQ

REQ

REQ

REQ

REQ

Figure 6.1.: Illustration of a service under a DDoS attack

requests which causes the computational resources to be overwhelmed. As a consequence,
the system which runs the service experiences a slowdown or even crashes.

Denial of Service (DoS) is one of the six categories defined in Micrsoft’s STRIDE threat
model [81] that defines a model for the security analysis of software-based systems: “Denial
of service (DoS) attacks deny service to valid users — for example, by making a Web server
temporarily unavailable or unusable. You must protect against certain types of DoS threats
simply to improve system availability and reliability.”.

We speak of a Distributed Denial of Service attack (DDoS), when more than one system
simultaneously attack a service. DDoS attacks are commonly run against web services and
use computational resources that are connected to the Internet to start sending false requests
to the service under attack. Usually attackers do not have direct access to hundreds or even
thousands of machines that could be needed to overwhelm a service. Instead, attackers use
so-called Botnets, which are collections of compromised computers that are connected to the
Internet. Usually the systems in a Botnet have been infiltrated by a piece of software. This
piece of software is often hidden to the user of the system and starts attacking a specific
target after an initialization message is received. Figure 6.1 illustrates a service under a
DDoS attack. Attackers send false requests that increase the workload on the system which
the service is running on. Clients sending normal requests are then facing an increased
time-to-service and may not receive a response at all.

DDoS attack on MasterCard.com

One of the more recent and prominent cases of a DDoS attack has been part of the “Operation
Payback” campaign by a group called “Anonymous” [94]. In late 2010, the group orches-
trated a DDoS attack against websites of financial institutions such as MasterCard.com
and PayPal.com. On December 8, 2010 at 07:53 AM EDT, MasterCard issued a state-
ment that “MasterCard is experiencing heavy traffic on its external corporate website —
MasterCard.com. We are working to restore normal speed of service. There is no impact
whatsoever on our cardholders ability to use their cards for secure transactions.” [72]. In
fact, by that time, the DDoS attack brought the website down and made their web presence
unavailable for most costumers. The attack on the servers lasted for several hours. At 02:53
PM on December 8, 2010, MasterCard issued a second statement in which they reported that
“MasterCard has made significant progress in restoring full-service to its corporate website.
Our core processing capabilities have not been compromised and cardholder account data
has not been placed at risk. While we have seen limited interruption in some web-based

104

6.2. The ASV Protocol

services, cardholders can continue to use their cards for secure transactions globally.” [73].
The attack on the corporate website of MasterCard and the resulting downtime, which

lasted for several hours, show that DDoS attacks pose a severe threat for web-based services.
Even though, in this case, no core business critical services were affected, a scenario in which
such services are neutralized can easily be imagined.

6.2. The ASV Protocol

In the shared channel attacker model [57], a legitimate sender and an attacker share a packet
communication channel. The attacker does not have full control over the communication
channel. Instead, both, the attacker and the sender, have each limited amounts of bandwidth
that they can use at their disposal. In contrast, in the Dolev-Yao model, attackers are able
to drop all packets of a legitimate sender (i.e. attackers are always able to perform a DoS
attack) which makes the model unsuitable for DoS analysis.

The Adaptive Selective Verification (ASV) protocol [66] assumes the shared channel at-
tacker model and is a cost-based DoS and DDoS resistant protocol in which bandwidth is
used as the currency. The protocol is characterized by the application of two concepts:
adaption and selection.

Adaption. Clients do not have access to explicit information about the nature and intensity
of a current attack. They attempt to adapt to a current level of attack on a service by
exponentially increasing the number of requests that they send within consecutive time
windows. As client bandwidth is limited, the client increases the number of requests
only up to a certain threshold. On the other side, the server adapts to the level of
the attack by dropping packets, with a higher probability as the attack becomes more
severe.

Selection. Servers collect a random sample of a bounded size among incoming requests and
process them at their mean processing rate.

In the following we give a more precise definition of the ASV protocol’s behavior. We
assume a simple request-response (e.g. remote procedure call) message exchange pattern
[111] between clients and a server. A client sends request packets (REQ) to the server. In
response, the server sends response packets (ACK) back to the client. The server’s mean
processing rate (in REQs per second) is denoted by S, while the clients’ arrival rate is
denoted by ρ, with 0 < ρmin ≤ ρ ≤ ρmax ≤ 1. Clients have a timeout window of T seconds
which is set to the expected worst case round-trip delay between the client and the server.
T is known to the clients as well as to the server. The timeout windows are denoted by Wi,
with i indicating the ith timeout window. In any given time window Wi, the system is under
a DDoS attack which is flooding the server with REQs at an attack rate which is denoted by
α(W) with 0 ≤ α(W) ≤ αmax. The attack aims to overwhelm the server by sending more
REQs per second (the attacker sends α(W) ∗ S fake REQs per second) than the server can
handle (S). Given that the channel capacity is not exceeded, it is assumed that no packets
are lost during transmission. Thus, a server cannot guarantee that an individual REQ will
be processed, if ρmax + αmax > 1. The clients’ replication threshold, i.e., the maximum
number of consecutive time windows a client tries to send REQs to the server before it gives

105

6. Guaranteeing Stable Availability under Distributed Denial of Service Attacks

up, is denoted by J , with J = ⌈log(αmax/ρmin)/log(2)⌉. In the original specification of the
ASV protocol, J is also referred to as the retrial span.

Behavior of the adaptive clients. Clients join the system at the rate ρ and send REQs to
the server. When no ACK is received within the timeout window of T seconds, the
client adaptively increases the number of REQs it sends in the succeeding time window
up to a maximum. The client-side protocol proceeds as follows.

C1. Initialize j ← 0 and J ← ⌈log(αmax/ρmin)/log(2)⌉.

C2. Send 2j REQs to the server.

C3. If no ACK is received within T seconds, set j ← j + 1. Otherwise, if an ACK is
received within T seconds, succeed and exit the system.

C4. If j ≤ J , continue at C2. Otherwise, fail and exit the system.

Behavior of the selective server. The server keeps a bounded buffer of incoming REQs
and, after T seconds, answers the REQs stored in the buffer. If a server receives less
REQs than the buffer size, the server answers all incoming REQs. Otherwise, the
server probabilistically drops or replaces REQs. The server-side protocol proceeds as
follows.

S1. Initialize the window count k ← 1.

S2. In a window Wk, store the first ⌊S∗T ⌋ REQs in the buffer. If the timeout window
ends and less than ⌊S ∗ T ⌋ REQs have been received, go to S4. Otherwise, set
the packet count to j ← ⌊S ∗ T ⌋+ 1.

S3. The jth REQ is accepted with probability ⌊S∗T ⌋/j and dropped with probability
1 − ⌊S ∗ T ⌋/j. If accepted, a uniformly distributed random REQ in the buffer
is replaced with the jth REQ . Then, increase the packet count (j ← j + 1) and
repeat the step until the timeout window ends.

S4. Send ACK s for each of the REQs in the buffer. Then, empty the buffer, set
k ← k + 1 and continue at step S2.

A manual analysis of the protocol described above is a demanding task [66]. In this
chapter, we specify the ASV protocol as a wrapper meta-object in Maude adapting a similar
wrapper specification in [6], and we formally analyze a ASV protected client-server system
that is facing a DDoS attack. To take advantage of the Cloud’s capacity for provisioning
more servers on demand, we also specify a Server Replicator meta-object. We then combine
both, the ASV and the Server Replicator meta-objects on top of the client-server system,
and formally analyze the composed system.

6.3. Maude-based Analysis of the ASV Protocol

The Maude-based formal model of the ASV protocol is based on the modularized actor
model and the Russian Dolls model that are introduced in Chapter 5. We follow a modular
and adaptive approach in specifying the model by using distributed object reflection, based
on highly reusable meta-object patterns. The ASV protocol is defined by a ASV Wrapper

106

6.3. Maude-based Analysis of the ASV Protocol

ASV WrapperASV Wrapper

REQ
REQn

REQ

ACK
Client Server

Figure 6.2.: Overview of a Cloud-based service setup using the ASV Wrapper

meta-objects for the client and the server (see Figure 6.2). This definition of a generic pro-
tocol wrapper can be applied to wide variety of client-server protocols that are originally not
protected against DDoS attacks1. In the following, we describe the Maude-based specifica-
tions of the generic wrappers and their application to a simple client-server request-response
system that is under a DDoS attack (see the scenario described in Section 6.2). We then
formally analyze the formal model using statistical model checking.

6.3.1. Description of the ASV specification in Maude

Figure 6.3 gives an overview of the specification. In the following, we describe each module
in more detail. The modules ASV-SERVER and ASV-CLIENT describe the ASV protocol
behavior for the server and the client. Both are generic and take the theory ASV-SERVER-
INTERFACE or ASV-CLIENT-INTERFACE as a parameter. The generic parameter defines
the specific behavior of the wrapped server or client.

The module SIMPLE-SERVER-COMMON

The functional module SIMPLE-SERVER-COMMON specifies the simple server that is used
in our setting. The server is modelled as a flat actor. The operator

op Server : -> ActorType .

defines the actor type of the simple server. The operators

op REQ : Address -> Contents .

op ACK : -> Contents .

define the messages that the simple server accepts from the outside. Clients can send a
message of the form S <- REQ(C) with S being the address of the server and C the address
of the client. The server answers this immediately with a message of the form C <- ACK. In
practice, of course, request messages will be of the form C <- REQ(q,C), with q an appropriate
query, and answers from the server will be of the form ACK(a), with a an appropriate answer;
however, for purposes of analysing the effectiveness of the ASV defense under DDoS attack,
the specific form that q and a can take in each underlying client-server system are immaterial
and therefore ignored.

1In its current form, the specified generic ASV Wrapper does only support protocols that are based on a
request-response message exchange pattern. The support of other message exchange patterns and more
complex forms of orchestration are proposed as future work.

107

6. Guaranteeing Stable Availability under Distributed Denial of Service Attacks

ASV-ANALYSIS

ASV-SERVER ATTACKER GENERATOR

{ASV-Server-Wrapper} {Generator-Wrapper}

X :: ASV-
SERVER-
INTERFACE

X ::
GENERATOR-
INTERFACE

ASV-
Server-
Wrapper

Generator-
Wrapper

usesuses

to to

GENERATOR-
WRAPPER

ASV-
SERVER-
WRAPPER

from from

SIMPLE-SERVER ASV-CLIENT

{Client-Wrapper}

ASV-PARAMS

X :: ASV-
CLIENT-
INTERFACE

Client-
Wrapper

CLIENT-
WRAPPER

from

to

uses

SIMPLE-CLIENT

SIMPLE-SERVER-COMMON

Figure 6.3.: Overview of the ASV analysis specification

108

6.3. Maude-based Analysis of the ASV Protocol

The module SIMPLE-SERVER

The system module SIMPLE-SERVER specifies the behavior of the simple server. The
variables

vars SA CA : Address .

var AS : AttributeSet .

var gt : Float .

are used in the rewrite rule

rl [SIMPLE-SERVER-RECEIVE-REQ] :

< SA : Server | AS >

{gt , SA <- REQ(CA)}

=>

< SA : Server | AS >

[gt , CA <- ACK] .

in which the server answers a client with a message of the form CA <- ACK when it receives a
message of the form SA <- REQ(CA).

The module SIMPLE-CLIENT

The system module SIMPLE-CLIENT specifies the client as a flat actor. The sort

sort Status .

and the operators

ops waiting connected : -> Status .

specify the state of the actor: The client is either waiting to get a response (waiting) from
the server or has already been served by the server (connected). The actor type of the client
is defined by the operator

op Client : -> ActorType .

and the internal state is specified by the operators

op status:_ : Status -> Attribute [gather(&)] .

op tts:_ : Float -> Attribute [gather(&)] .

which store the state of the actor and the time between the request of the actor and the
answer from the server. The variables

var AC : Address .

var AS : AttributeSet .

vars gt tts : Float .

are used in the rewrite rule

sort Status .

rl [CLIENT-RECEIVE-ACK] :

< AC : Client | status: waiting, tts: tts, AS >

{gt, AC <- ACK}

=>

< AC : Client | status: connected, tts: (gt - tts) ,AS > .

which specifies the behavior of a client upon receiving an answer from the server: It changes
its state to connected and calculates the time between the request and the current time2.

2The attribute tts is set to the current global time when the client sends the request to the server.

109

6. Guaranteeing Stable Availability under Distributed Denial of Service Attacks

The module ASV-PARAMS

The functional module ASV-PARAMS specifies the parameters that are used in subsequent
specifications. The operators

op attacker-count : -> Nat .

op APS : -> Float .

specify the number of attackers and the number of attacks per second. The operator

op rho : -> Float .

specifies the client attack rate. The operator

op S : -> Float .

represents the number of packets a server can handle per server timeout. The operators

op Ts : -> Float .

op Tc : -> Float .

specify the timeout period of the server (Ts) and of the client (Tc). In the description of
the ASV protocol in Section 6.2, the timeouts have the same value and are denoted by T .
Finally, the operator

op J : -> Nat .

defines the retrial span.

The module ATTACKER

The system module ATTACKER models the kind of DoS attacker used in our setting. The
attacker is modeled as a flat actor. The operator

op Attacker : -> ActorType .

represents the actor type of the attacker. The operator

op attacker-period : -> Float .

which is defined by the equation

eq attacker-period = 1.0 / (APS * float(attacker-count)) .

defines the time periods in which the attacker periodically sends new requests to the server.
Instead of modelling attacker-count DDoS attackers, we decided to model only one single DoS
attacker that performs the attack for the intended number of attackers. Since an attacker
sends APS requests per second, the single attacker actor we use attacks with (APS * float(

attacker-count) requests per second. The attributes

op sua:_ : Address -> Attribute [gather(&)] .

op acount:_ : Nat -> Attribute [gather(&)] .

op success-cnt:_ : Nat -> Attribute [gather(&)] .

specify the attacker’s state: The attribute sua contains the address of the server under
attack, the attribute acount contains the count of requests that have already been sent, and
the attribute success-cnt counts the number of requests that have actually been answered
by the server. The operator

op attack! : -> Contents .

110

6.3. Maude-based Analysis of the ASV Protocol

is used as the contents of a self-addressed message to periodically trigger an attack. In the
following definitions of the behavioral rules, the variables

vars A SA : Address .

var N : Nat .

var gt : Float .

var AS : AttributeSet .

are used.
In the rewrite rule

rl [ATTACKER-ATTACK] :

< A : Attacker | sua: SA, acount: N, AS >

{gt, A <- attack!}

=>

< A : Attacker | sua: SA, acount: s(N), AS >

[gt, SA <- REQ(A)]

[gt + attacker-period, A <- attack!] .

the attacker reacts to a self-addressed attack! message by sending a request to the server
under attack and scheduling a further attack! message. Finally, the rewrite rule

rl [ATTACKER-CONSUME-ACKS] :

< A : Attacker | success-cnt: N, AS >

{gt, A <- ACK}

=>

< A : Attacker | success-cnt: s(N), AS > .

specifies how the attacker consumes the answers from the server and increments the attribute
success-cnt.

The theory ASV-SERVER-INTERFACE

The theory ASV-SERVER-INTERFACE defines the interface that the ASV server wrapper
needs to know about the server it wraps. The operator

op maxLoadPerServer : -> Float .

defines the maximum amount of packages a server can handle within a timeout period. The
operator

op asv-server-timeoutperiod : -> Float .

defines the timeout period.

The theory ASV-CLIENT-INTERFACE

Similar to the theory ASV-SERVER-INTERFACE, the theory ASV-CLIENT-INTERFACE
specifies the interface an ASV client wrapper needs to know about the wrapped client. The
operator

op uniqueMessageId : Contents -> Nat .

needs to be implemented by the client. For each message that a client sends, the opera-
tor returns a unique identifier that is used to differentiate between different request-reply
message pairs. The operator

op asv-client-timeoutperiod : -> Float .

111

6. Guaranteeing Stable Availability under Distributed Denial of Service Attacks

specifies the timeout period for the ASV client. Lastly, the operator

op asv-client-max-retry-count : -> Nat .

defines the maximum number of retries per message.

The module ASV-SERVER

The system module ASV-SERVER is parametrized by the theory ASV-SERVER-INTERFACE
and describes the generic ASV server wrapper. As already mentioned, the ASV server is
specified as a Russian dolls actor that wraps the actual server in its configuration. The actor
type

op ASV-Server : -> ActorType .

specifies the type of the ASV server. The internal state of the ASV server is represented by
the attributes

op msg-buffer:_ : MsgList -> Attribute [gather(&)] .

op msg-count:_ : Float -> Attribute [gather(&)] .

op internal-addr:_ : Address -> Attribute [gather(&)] .

which contains the message buffer (msg-buffer), the overall count of the messages (msg-count),
and the address of the internal server (internal-addr). The ASV server periodically sends a
message with the contents

op asv-server-timeout : -> Contents .

to itself to trigger the buffered messages to be sent to the wrapped server after each timeout
period. The variables

vars SA IA A : Address .

var I : Nat .

var L : MsgList .

var AS : AttributeSet .

var C : Config .

var gt : Float .

var REPLACE? : Bool .

var CO : Contents .

var CNT : Float .

are used in the definition of the following rewrite rules that specify the behavior of the ASV
server.

If a message (other than the self-addressed message with the contents asv-server-timeout)
arrives at the ASV server, the server performs the adaptation and selection as specified
above and either drops the message or stores it in the buffer. The conditional rewrite rule

crl [ASV-SERVER-RECEIVE-MSG] :

< SA : ASV-Server | msg-count: CNT, msg-buffer: L,

internal-addr: IA, AS >

{gt, SA <- CO}

=>

if (float(L .size) >= floor(maxLoadPerServer)) then

if (sampleBerWithP(floor(maxLoadPerServer) / (CNT + 1.0))) then

< SA : ASV-Server | msg-count: CNT + 1.0,

msg-buffer: L [sampleUniWithInt(L .size)]:= (IA <- CO),

internal-addr: IA, AS >

112

6.3. Maude-based Analysis of the ASV Protocol

else

< SA : ASV-Server | msg-count: CNT + 1.0, msg-buffer: L,

internal-addr: IA, AS >

fi

else

< SA : ASV-Server | msg-count: CNT + 1.0, msg-buffer: ((IA <- CO) ; L),

internal-addr: IA, AS >

fi

if

CO =/= asv-server-timeout .

defines this behavior. If the size of the buffer is already exceeded, a coin is tossed to decide
whether the message should be dropped or not, i.e., it is randomly decided according to a
Bernoulli distribution with success probability floor(maxLoadPerServer)/ (CNT + 1.0). If the
message is not dropped, a uniformly chosen request in the list is replaced by the incoming
request. The second kind of messages a server has to handle is the periodical asv-server-

timeout message. The rewrite rule

rl [ASV-SERVER-TIMEOUT] :

< SA : ASV-Server | msg-count: CNT, msg-buffer: L, config: C, AS >

{gt, SA <- asv-server-timeout}

=>

< SA : ASV-Server | msg-count: 0.0, msg-buffer: mtMsgList,

config: createMsgs(L, gt) C, AS >

[gt + asv-server-timeoutperiod, SA <- asv-server-timeout] .

reacts to the timeout message and sends all buffered requests to the wrapped server using
the createMsgs operator. Additionally, the periodical message is sent.

Since the wrapped server internally produces answers, the ASV server wrapper needs to
take the internal messages out of its configuration and emit them in the configuration it is
located in. The two rewrite rules

crl [ASV-SERVER-TAKE-MESSAGES-OUT1] :

< SA : ASV-Server | config: {gt, A <- CO } C, AS >

=>

< SA : ASV-Server | config: C, AS >

[gt, A <- CO]

if | A | <= | SA | .

crl [ASV-SERVER-TAKE-MESSAGES-OUT2] :

< SA : ASV-Server | config: {gt, A <- CO } C, AS >

=>

< SA : ASV-Server | config: C, AS >

[gt, A <- CO]

if | A | > | SA | /\ prefix(A, | SA |) =/= SA .

describe this behavior. There are two cases in which a message needs to be taken out of
the internal configuration: (i) if the address of the receiver of the message is smaller (i.e.,
it is located at a higher level in the address hierarchy) than the ASV server’s address, or
(ii) if the address of the receiver is bigger (i.e., it is located at a lower level in the address
hierarchy) but the ASV server’s address is not contained as a prefix in the receiver’s address
(i.e., the message is addressed to another subtree of the address hierarchy).

113

6. Guaranteeing Stable Availability under Distributed Denial of Service Attacks

The module ASV-CLIENT

The system module ASV-CLIENT is parametrized by the theory ASV-CLIENT-INTERFACE.
The module describes the behavior of the ASV client wrapper. The wrapper is modeled as
a Russian dolls actor and contains the wrapped client in its configuration. Since the ASV
client wrapper generally wraps any client with any kind of request-reply communication, the
ASV client wrapper stores the requests the client sends to the server in a message buffer.
The ASV client periodically sends a timeout message to itself and, upon receiving one, it
replicates the individual requests according to the current ASV adaptation parameter. If
the server answers a specific request, the request is removed from the buffer and the answer
is sent to the client. In order to identify request-reply pairs, the client needs to implement
the uniqueMsgId operator.

The operator

op ASV-Client : -> ActorType .

defines the actor type of the ASV client wrapper. The attributes

op message-buffer:_ : NatMsgNatSet -> Attribute [gather(&)] .

op client:_ : Address -> Attribute [gather(&)] .

op server:_ : Address -> Attribute [gather(&)] .

represent the internal state of the ASV client. The attribute message-buffer contains the
buffered messages3, the attribute client the address of the wrapped client, and the attribute
server the address of the ASV server. The ASV client periodically sends a message with the
contents

op asv-client-timeout : -> Contents .

to itself in order to duplicate the buffered messages according to the ASV client adaption
strategy and to send the buffered messages to the server. The operators

op inc : NatMsgNatSet -> NatMsgNatSet .

op msgs : Float NatMsgNatSet -> Config .

op msgs : Float NatMsgNat -> Config .

are used to increment the replication counter for all messages in, and to create the replicated
messages from a term of sort NatMsgNatSet. For the sake of brevity, the operators’ behavior
is not described here.

In the following, the variables

var A CA SA : Address .

var MB : NatMsgNatSet .

var ID : Nat .

var gt : Float .

var CO : Contents .

var N : Nat .

var C : Config .

var AS : AttributeSet .

var E : NatMsgNat .

var M : Msg .

3The sort NatMsgNatSet represents a mapping between a unique message id and a message together with a
natural number that counts how often it has already been replicated. The sort is specified in the module
NATMSGNATSET

114

6.3. Maude-based Analysis of the ASV Protocol

are used. The conditional rewrite rule

crl [ASV-CLIENT-RECEIVING-REQUESTS-FROM-WRAPPED-CLIENT] :

< A : ASV-Client | message-buffer: MB, server: SA,

config: {gt, SA <- CO} C, AS >

=>

< A : ASV-Client | message-buffer: (ID, SA <- CO, 1) MB, server: SA,

config: C, AS > [gt, SA <- CO]

if ID := uniqueMessageId(CO) .

consumes a message that is sent from the wrapped client to the server. The message together
with a replication count of 1 is added to the message buffer. Additonally, the message is
directly sent. The conditional rewrite rule

crl [ASV-CLIENT-RECEIVE-ACK] :

< A : ASV-Client | message-buffer: MB, client: CA, config: C, AS >

{gt, CA <- CO}

=>

if (ID in MB) then

< A : ASV-Client | message-buffer: MB .remove(ID), client: CA,

config: [gt, CA <- CO] C, AS >

else

< A : ASV-Client | message-buffer: MB, client: CA, config: C, AS >

fi

if CO =/= asv-client-timeout .

handles the processing of answers from the server. If there is a matching request in the
message buffer, the request is removed and the message is sent to the wrapped client.
Otherwise, the message is dropped. The periodic timeouts are performed by the rewrite
rule

rl [ASV-CLIENT-TIMEOUT] :

< A : ASV-Client | message-buffer: MB, AS >

{gt, A <- asv-client-timeout}

=>

< A : ASV-Client | message-buffer: inc(MB), AS >

msgs(gt, MB)

[gt + asv-client-timeoutperiod, A <- asv-client-timeout] .

which creates the replicated messages from the message buffer using the operator msgs and
increments the replication counter for all messages using the operator inc.

The module ASV-SERVER-WRAPPER

The module ASV-SERVER-WRAPPER connects the module ASV-SIMPLE-SERVER with
the theory ASV-SERVER-INTERFACE. The operators of the interface are specified as fol-
lows.

op maxLoadPerServer : -> Float .

eq maxLoadPerServer = Ts * S .

op asv-server-timeoutperiod : -> Float .

eq asv-server-timeoutperiod = Ts .

The view

115

6. Guaranteeing Stable Availability under Distributed Denial of Service Attacks

view ASV-Server-Wrapper from ASV-SERVER-INTERFACE to ASV-SERVER-WRAPPER is

op maxLoadPerServer to maxLoadPerServer .

op asv-server-timeoutperiod to asv-server-timeoutperiod .

endv

finally connects the module with the theory and is later used to instantiate the ASV-
SERVER module.

The module CLIENT-WRAPPER

As with the module ASV-SERVER-WRAPPER, the module CLIENT-WRAPPER connects
the module SIMPLE-CLIENT with the theory ASV-CLIEN-INTERFACE. The operators
defined in the theory are specified and set to values according to the parameters specified
in the module ASV-PARAMS.

op uniqueMessageId : Contents -> Nat .

op asv-client-timeoutperiod : -> Float .

op asv-client-max-retry-count : -> Nat .

eq asv-client-timeoutperiod = Tc .

eq asv-client-max-retry-count = J .

var A : Address .

var CO : Contents .

eq isRequest(REQ(A)) = true .

eq isRequest(CO) = false [owise] .

Finally, the view

view Client-Wrapper from ASV-CLIENT-INTERFACE to CLIENT-WRAPPER is

op uniqueMessageId to uniqueMessageId .

op asv-client-timeoutperiod to asv-client-timeoutperiod .

op asv-client-max-retry-count to asv-client-max-retry-count .

endv

specifies a view from the theory ASV-CLIENT-INTERFACE to the module CLIENT-
WRAPPER. This view is used to instantiate the ASV-CLIENT module.

The module GENERATOR-WRAPPER

The module GENERATOR-WRAPPER specifies the generic parts of the generator that is
used in our setting. The attribute

op server:_ : Address -> Attribute [gather(&)] .

represents an additional attribute of the generator that contains the address of the server.
This attribute is needed to properly initialize the ASV clients. Additionally, the operators

op generator-spawn-period : -> Float .

op generator-create : AttributeSet Float Address -> Config .

specify the operators that are required by the theory GENERATOR-INTERFACE. The
operator generator-spawn-period returns the period after which the generator periodically
creates the configuration that is returned by reducing the operator generator-create with
the generators attributes, the current global time, and a new address as arguments.

The variables

116

6.3. Maude-based Analysis of the ASV Protocol

var AS : AttributeSet .

var A : Address .

var ASV : Address .

var gt : Float .

are used in the following equations. The equation

eq generator-spawn-period = 1.0 / (rho * S) .

specifies the spawn period of the server according to the parameters of the ASV protocol.
The equation

eq generator-create((server: ASV, AS), gt, A) =

< A : ASV-Client |

config: < A . 1 > < A . 0 : Client | status: waiting, tts: gt >

[gt, ASV <- REQ(A . 0)],

message-buffer: mtNMNSet, server: ASV, client: A . 0 >

[gt, A <- asv-client-timeout] .

defines the specific behavior of the operator generator-create. Thereby, a new ASV client
wrapper is created that contains a simple client. The simple client directly sends a request
and sets the request time to the current global time. Additionally, the periodic timeout
message of the ASV client is sent.

Finally, the view

view Generator-Wrapper from GENERATOR-INTERFACE to GENERATOR-WRAPPER is

op generator-spawn-period to generator-spawn-period .

op generator-create to generator-create .

endv

connects the theory GENERATOR-INTERFACE and the GENERATOR-WRAPPER. The
view is used to instantiate the module GENERATOR.

The module ASV-SR-INIT

The system module ASV-SR-INIT connects the modules described before, defines the initial
state of the system, and specifies operators which are used by the PVeSTa tool. The initial
state is defined by the equation

ceq initState =

< SRA : ASV-Server |

config:

< SRA . 1 >

< (SRA . 0) : Server | mt >,

msg-count: 0.0, msg-buffer: mtMsgList, internal-addr: (SRA . 0) >

< GA : Generator | count: 0, server: SRA, config: < GA . 0 > >

< AA : Attacker | acount: 0, sua: SRA, success-cnt: 0 >

{0.0 | nil}

[0.0, AA <- attack!]

[0.05 + generator-spawn-period, GA <- spawn]

[asv-server-timeoutperiod, SRA <- asv-server-timeout]

if

NG := < 0 > /\

SRA := NG .new /\

NG’ := NG .next /\

GA := NG’ .new /\

NG’’ := NG’ .next /\

AA := NG’’ .new .

117

6. Guaranteeing Stable Availability under Distributed Denial of Service Attacks

which uses the variables

vars SRA GA AA : Address .

var NG NG’ NG’’ : NameGenerator .

var C : Config .

The initial state consists of the ASV server wrapper, which contains a simple server, the
generator, the attacker, and the top-level scheduler. The periodic behaviors of the attacker,
the generator, and the ASV server are initialized. Finally, the operators for the connection
between Maude and the PVeSTa tool are specified by the equations

eq val(0, C) = successRatio(C) .

eq val(1, C) = avgTTS(C) .

6.3.2. Statistical Model Checking Results

We use the specification of the ASV Wrapper meta-object together with the client-server
setting to perform statistical model checking of QuaTEx formulas that analyse the behavior
of ASV under DoS attacks using PVeStA.

The following QuaTEx formulas define the quantitative properties we want to analyze.
The function time() denotes a state function that returns the global time value of the current
configuration.

Client success ratio. The client success ratio defines the ratio of clients that receive an
ACK from the server.

successRatio(t) = if time() > t then

countSuccessful()

countClients()

else © (successRatio(t))

with countSuccessful() being the result of equationally counting the number of clients
whose status is “connected” (i.e., successful clients) and the total number of clients
countClients() being equal to the client counter attribute (count) of the client generator
object.

Average TTS. The average TTS is the average time it takes for a successful client to receive
an ACK from the server.

avgTTS (t) = if time() > t then

sumTTS ()

countSuccessful()

else © (avgTTS (t))

with sumTTS () being the result of adding up the times given by the successful clients’
TTS attributes (tts). The number of successful clients countSuccessful() is computed
as described above for the client success ratio.

118

6.4. ASV+SR — a 2-Dimensional Protection Mechanism against DDoS Attacks

Number of client requests. The number of client requests represents the number of REQs
sent by legitimate clients (not including REQs sent by attackers).

requests(t) = if time() > t then countRequests()

else © (requests(t))

with countRequests() being equal to the client request counter attribute of the server
object.

For the statistical model checking of the aforementioned properties, we fix the mean server
processing rate S to 600 packets per second, the timeout window T to 0.4 seconds, the retrial
span J to 7, and the client arrival rate ρ to 0.08. Additionally, an initial generation delay of
0.05 seconds is introduced and the duration of a simulation is set to 30 seconds. The values
of the parameters correspond to the values chosen in [66, 9]. The properties are checked
for various attack conditions represented by the constant α values 0.6666, 3.3333, 6.6666,
13.3333, 26.6666, 40.0, 53.3333, 66.6666, 80.0, 93.3333, 106.6666, 120.0, and 133.3333, which
correspond to 1, 5, 10, 20, 40, 60, 80, 100, 120, 140, 160, 180, and 200 attackers (each attacker
issues 400 fake REQs per second). It is of note that already 1.5 attackers overwhelm the
server. This represents a rather pessimistic setting (for the service provider) where the
service is potentially highly resource-dependent.

To demonstrate the effectiveness of the ASV protocol and to compare the results of our
modularized ASV model with the results in [66, 9], we check the aforementioned properties
for two setups, using

a) the ASV protocol on the server- and client-side.

b) a non-adaptive client strategy, namely the Naive protocol, in which a client does not
exponentially increase the number of REQs after each time window but keeps sending
a single REQ.

The parameters for each configuration that the properties are checked for are set in the
module ASV-PARAMS. The initial configuration that is used for the statistical model check-
ing using PVeStA is defined in the module ASV-SR-INIT.

Figure 6.4 shows the results of the statistical model checking. The results clearly demon-
strate the effectiveness of the ASV protocol compared to the non-adaptive client strategy.
They also confirm the results in [66, 9]. Figure 6.4(a) shows that the ASV protocol can
guarantee a high availability (> 70%) of the system even when facing a heavy attack (200
attackers). ASV outperforms the Naive protocol at any level of attack regarding the client
success ratio. As shown in Figures 6.4(b) and 6.4(c), the ASV protocol achieves this higher
availability at the expense of an increased average TTS and an increased number of client
requests (bandwidth), the only exception being that for less than 20 attackers the average
TTS using the ASV protocol is slightly lower than the one using the Naive protocol.

6.4. ASV+SR — a 2-Dimensional Protection Mechanism

against DDoS Attacks

Cloud-based systems offer the possibility of provisioning resources on demand. For many
applications, provisioning additional servers and replicating the service-providing application

119

6. Guaranteeing Stable Availability under Distributed Denial of Service Attacks

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120 140 160 180 200

E
xp

ec
te

d
C

lie
nt

 S
uc

es
s

R
at

io
 [%

]

Number of Attackers

ASV Naive

(a) Client success ratio

 0

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100 120 140 160 180 200

E
xp

ec
te

d
A

ve
ra

ge
 T

T
S

 [m
s]

Number of Attackers

ASV Naive

(b) Average TTS

 0

 5000

 10000

 15000

 20000

 25000

 0 20 40 60 80 100 120 140 160 180 200

E
xp

ec
te

d
N

um
be

r
of

 C
lie

nt
 R

eq
ue

st
s

Number of Attackers

ASV Naive

(c) Number of client requests

Figure 6.4.: Performance of the ASV protocol compared to a non-adaptive client strategy

can alleviate a DDoS attack, because more requests per second can be handled. In the
following, we describe ASV+SR, a two-dimensional protection mechanism against DDoS
attacks, which uses two meta-objects, namely:

• the ASV Wrapper as an adaptive counter-measurement against DDoS attacks, which
is applied by clients and the server, and

• a Server Replicator, which exploits the Cloud’s capacity for provisioning more servers
on demand.

6.4.1. The Server Replicator meta-object and the ASV+SR protocol

The Server Replicator (SR) is a meta-object that wraps around servers in a Cloud-based
setup (see Figure 6.5). The servers are wrapped according to the Russian Dolls model. Thus,
every message first has to pass through the meta-object (the Server Replicator) before a
wrapped server can process it. In our abstraction, a Server Replicator distributes incoming
messages among the wrapped servers (randomly according to a uniform distribution) and
spawns new servers according to a server-side metric, i.e., replicates the service that is
provided by the wrapped servers. In most cases, such a metric should be kept simple and

120

6.4. ASV+SR — a 2-Dimensional Protection Mechanism against DDoS Attacks

Cloud

Client

Server1 . . . ServerN

Server Replicator Wrapper

REQ REQ

ACK

Figure 6.5.: Overview of a Cloud-based service setup using the Server Replicator Wrapper

Cloud

ASV Wrapper
ASV Wrapper

. . .

ASV Wrapper

Server Replicator Wrapper

REQn
REQ

ACK

REQ REQ

REQ

Client
Server1 ServerN

Figure 6.6.: Overview of a Cloud-based service setup using the ASV+SR protection

easy to evaluate, because complex metrics can introduce a high additional workload on the
system and can possibly increase the latency for the wrapped service. In the following, we
use the number of incoming messages and a statically defined maximum load per server
to define a simple metric. Thereby, the Server Replicator meta-object keeps track of the
number of incoming messages and periodically checks if the result of a function of the two
variables, number of incoming messages and maximum load per server, evaluates to an
integer value that is greater than the number of wrapped servers and, if this is the case, the
Server Replicator spawns a new server in its inner configuration.

The ASV+SR protocol combines the Server Replicator with the ASV Wrapper to achieve
protection against DDoS attacks in two dimensions of adaptation: (i) adapting to increas-
ingly more severe DoS attacks using the ASV mechanism; and (ii) adapting to the increasing
need for server performance using the SR mechanism. An overview of a Cloud-based service
setup that uses the ASV+SR protocol is shown in Figure 6.6. Clients and servers still adapt

121

6. Guaranteeing Stable Availability under Distributed Denial of Service Attacks

to a possible attack by exponentially increasing the number of requests on the client-side
and by collecting a random sample of incoming requests on the server-side. However, the
entry-point for all requests on the server-side is no longer a single server but the Server
Replicator meta-object. The meta-object wraps around server instances which are them-
selves wrapped by the server-side ASV Wrapper. In the ASV+SR protocol, the maximum
load per server is equal to the product of its time out window size and the server’s mean
processing rate (T ∗ S). For the replication metric, an additional parameter k, namely, the
server overloading factor, is defined. The metric says that a new server is spawned by the
Server Replicator, if the servers are overloaded by the overloading factor times their max-
imum load, e.g., for a factor of k = 4 and a maximum load of 10 REQs per second per
server, the Server Replicator spawns a new server if the wrapped servers have a load average
that is greater than 40 REQs per second per server. Thus, the factor k defines by how
much an ASV+SR protected system uses the selection mechanism of the server-side ASV
Wrapper. An overloading factor of k = 1 means that the ASV protocol is nearly unused4, an
overloading factor of k = ∞ means that only the ASV protocol is used, because additional
servers are never provisioned by the Server Replicator. We therefore propose an overloading
factor k with 1 < k <∞ to be used with the ASV+SR protocol.

6.4.2. Description of the ASV+SR specification in Maude

The modularity of the specification of the ASV protocol (see Section 6.3) allows for a simple
extension of the model to include the Server Replicator meta-object. In the following, we
describe the Maude modules that correspond to the specification of the Server Replicator
meta-object. Figure 6.3 gives an overview of the specification which is used for the analysis
of the ASV+SR protocol.

The theory SERVER-REPLICATOR-INTERFACE

The theory SERVER-REPLICATOR-INTERFACE defines the operators that the server
replicator needs to use regarding the servers that are replicated. The operators

op maxLoadPerServer : Float -> Float .

op sr-check-period : -> Float .

specify the information that is needed for the server-side metric. The operator maxLoadPerServer
represents the maximum load that one server can handle at a specific global time. The

period after which the server replicator checks the server-side metric is specified by the
operator sr-check-period. The constant operator

op sr-fwd-delay : -> Float .

specifies the delay that is introduced by forwarding a message from the server replicator
to one of the replicated servers. If the server decides to spawn a new server, it calls the
operators

op replicate : Address -> Actor .

op init : Address Float -> Config .

4The ASV protocol is only used, if the random distribution of incoming requests among the wrapped servers
leads to the situation where a wrapped server is assigned with the processing of more requests than its
buffer size in a specific time window.

122

6.4. ASV+SR — a 2-Dimensional Protection Mechanism against DDoS Attacks

ASV-ANALYSIS

SERVER-
REPLICATOR

ATTACKER GENERATOR

X :: SERVER-
REPLICATOR-
INTERFACE

{Server-Replicator-Wrapper}

Server-
Replicator-
Wrapper

to

uses

SERVER-
REPLICATOR-
WRAPPER

ASV-SERVER

{ASV-Server-Wrapper}

from

{Generator-Wrapper}

X :: ASV-
SERVER-
INTERFACE

X ::
GENERATOR-
INTERFACE

ASV-
Server-
Wrapper

Generator-
Wrapper

uses

to

to

GENERATOR-
WRAPPER

ASV-
SERVER-
WRAPPER

from

from

SIMPLE-SERVER

ASV-CLIENT

{Client-Wrapper}

ASV-PARAMS

X :: ASV-
CLIENT-
INTERFACE

Client-
Wrapper

CLIENT-
WRAPPER

from

to

uses

SIMPLE-CLIENT

SIMPLE-SERVER-COMMON

uses

Figure 6.7.: Overview of the ASV+SR analysis specification

123

6. Guaranteeing Stable Availability under Distributed Denial of Service Attacks

which create and initialize a new server. The operator replicate returns the new server
and the operator init returns the messages that are needed to initialize the behavior of the
wrapped server.

The module SERVER-REPLICATOR

The system module SERVER-REPLICATOR specifies the behavior of the server replicator.
The module is parametrized by the theory SERVER-REPLICATOR-INTERFACE, which
specifies the internal behavior of a replicated server. As already mentioned before, the server
replicator is specified as a Russian dolls actor. The operator

op ServerReplicator : -> ActorType .

defines the actor type of the server replicator. The internal state is represented by the
attributes

op server-list:_ : AddressList -> Attribute [gather(&)] .

op msg-count:_ : Nat -> Attribute [gather(&)] .

which contain a list of addresses of the replicated servers and the total amount of messages
that are forwarded to the replicated servers. The total amount of messages is used to decide
when to replicate a new server. The server replicator periodically sends a message with
contents

op check : -> Contents .

to itself to check whether a new server needs to be replicated. If a new server needs to be
replicated, the server replicator sends a message with the message contents

op spawnServer : -> Contents .

to itself to trigger the replication. The operator

op pickRandom : AddressList -> Address .

takes a list of addresses as an argument and returns a uniformly randomly picked address
from the list. The variables

var SL : AddressList .

var gt : Float .

var C : Config .

var N : Nat .

var AS : AttributeSet .

var CO : Contents .

var NG : NameGenerator .

vars A SA SRA : Address .

are used in the specification of the behavior of the server replicator. The equation

eq pickRandom(SL) = SL[sampleUniWithInt(SL .size)] .

defines the pickRandom operator which uniformly picks an address from a given list. The
server-side metric is specified by the rewrite rule

rl [SERVER-REPLICATOR-CHECK] :

< SRA : ServerReplicator | server-list: SL, msg-count: N, AS >

{gt , SRA <- check }

=>

124

6.4. ASV+SR — a 2-Dimensional Protection Mechanism against DDoS Attacks

< SRA : ServerReplicator | server-list: SL, msg-count: N, AS >

if (max(float(N) / maxLoadPerServer(gt), 1.0) > float(SL .size)) then

[gt, SRA <- spawnServer]

else

null

fi

[gt + sr-check-period, SRA <- check] .

which checks whether the servers are overloaded according to the operator maxLoadPerServer.
If the servers are overloaded, a message with contents spawnServer is sent by the replicator
to itself in order to trigger the replication of a server. Additionally, the next self-addressed
check message is scheduled. The conditional rewrite rule

crl [SERVER-REPLICATOR-SPAWN-SERVER] :

< SRA : ServerReplicator | config: NG C, server-list: SL, AS >

{gt, SRA <- spawnServer }

=>

< SRA : ServerReplicator |

config: (NG .next) C replicate(SA) init(SA, gt),

server-list: (SA ; SL), AS >

if SA := NG .new .

spawns a new server. A new name is generated using the name generator and the server is
replicated and initialized with the new address. Finally, the name generator is updated and
the address is added to the list of replicated servers.

If a message other than the self-addressed messages arrives at the server replicator, the
replicator forwards the message to a uniformly chosen server. The rewrite rule

crl [SERVER-REPLICATOR-RECEIVE-MSG] :

< SRA : ServerReplicator | server-list: SL, msg-count: N, config: C, AS >

{gt , SRA <- CO }

=>

< SRA : ServerReplicator | server-list: SL, msg-count: s(N),

config: [gt + sr-fwd-delay, pickRandom(SL) <- CO] C, AS >

if

CO =/= check /\ CO =/= spawnServer .

specifies this behavior. A random server is chosen using the pickRandom operator. As the
replicated servers communicate with the outside, the server has to forward these messages
to the outside. The rewrite rules

crl [SERVER-REPLICATOR-TAKE-MESSAGES-OUT1] :

< SRA : ServerReplicator | config: {gt, A <- CO } C, AS >

=>

< SRA : ServerReplicator | config: C, AS >

[gt, A <- CO]

if | A | <= | SRA | .

crl [SERVER-REPLICATOR-TAKE-MESSAGES-OUT2] :

< SRA : ServerReplicator | config: {gt, A <- CO } C, AS >

=>

< SRA : ServerReplicator | config: C, AS >

[gt, A <- CO]

if | A | > | SRA | /\ prefix(A, | SRA |) =/= SRA .

do the forwarding. The first rewrite rule forwards a message to the outside if the receiver’s
address is smaller than the server replicator’s address. This is the fact if the receiver of the

125

6. Guaranteeing Stable Availability under Distributed Denial of Service Attacks

message is located at a higher level in the address hierarchy than the replicator. Otherwise,
the message is forwarded if the receiver’s address is longer but is not prefixed by the server
replicator’s address. This happens if the receiver is located at a lower level in another subtree
of the address hierarchy5.

The module SERVER-REPLICATOR-WRAPPER

The system module SERVER-REPLICATOR-WRAPPER instantiates the theory SERVER-
REPLICATOR interface. It specifies that the server replicator spawns new ASV servers.
Basically, the operators and equations

op sr-fwd-delay : -> Float .

eq sr-fwd-delay = 0.0 .

op sr-check-period : -> Float .

eq sr-check-period = 0.01 .

define the constant operators that are specified in the theory. The operator

op maxLoadPerServer : Float -> Float .

is defined by the equation

eq maxLoadPerServer(t) =

(floor(t / asv-server-timeoutperiod) + 1.0)

* maxLoadPerServer * server-overload-factor .

and specifies the maximum load for a single server. In every timeout period, maxLoadPerServer
* server-overload-factor packets can be handled by one server. Finally, the two operators

op replicate : Address -> Actor .

op init : Address Float -> Config .

specify the effect of a replicator replicating a server. The variables

var A : Address .

var t : Float .

are used in the following equations. The equation

eq replicate(A) =

< A : ASV-Server |

config:

< A . 1 >

< (A . 0) : Server | mt >,

msg-count: 0.0, msg-buffer: mtMsgList, internal-addr: (A . 0) > .

creates an ASV server which contains one simple server. The equation

eq init(A, t) =

[t + asv-server-timeoutperiod, A <- asv-server-timeout] .

initializes the replicated ASV server by emitting the ASV server timeout message.
Finally, the module SERVER-REPLICATOR-WRAPPER is connected to the theory

SERVER-REPLICATOR-INTERFACE by the view

5The addressing scheme that is introduced by the modularized actor model simplifies the decision whether
a message is addressed to the outside or to the inside. One can judt check the length and the prefix of
the address.

126

6.4. ASV+SR — a 2-Dimensional Protection Mechanism against DDoS Attacks

view Server-Replicator-Wrapper from SERVER-REPLICATOR-INTERFACE to SERVER-

REPLICATOR-WRAPPER is

op sr-fwd-delay to sr-fwd-delay .

op sr-check-period to sr-check-period .

op replicate to replicate .

op init to init .

op maxLoadPerServer to maxLoadPerServer .

endv

The module ASV-SERVER-REPLICATOR-INIT

The system module ASV-SERVER-REPLICATOR-INIT connects the aforementioned mod-
ules, defines the initial configuration, and the connection to PVeSta. The initial state is
defined by the equation

ceq initState =

< SRA : ServerReplicator | config: < SRA . 0 >,

server-list: mtAddressList, msg-count: 0 >

< GA : Generator | count: 0, server: SRA, config: < GA . 0 > >

< AA : Attacker | acount: 0, sua: SRA, success-cnt: 0 >

{0.0 | nil}

[0.0, SRA <- check]

[0.05 + generator-spawn-period, GA <- spawn]

[0.05, AA <- attack!]

if

NG := < 0 > /\

SRA := NG .new /\

NG’ := NG .next /\

GA := NG’ .new /\

NG’’ := NG’ .next /\

AA := NG’’ .new .

which uses the variables

vars SRA GA AA : Address .

var NG NG’ NG’’ : NameGenerator .

var C : Config .

The initial state consists of the server replicator (which replicates the ASV server), the
generator (which generates the ASV clients), the attacker, and the top level scheduler.
Additionally, the replicator, generator and attacker are initialized. Finally, the equations

eq sat(0, C) = true .

eq val(0, C) = successRatio(C) .

eq val(1, C) = avgTTS(C) .

connect the operators succerssRatio and avgTTS to PVeSta.

6.4.3. Statistical Model Checking Results

As in Section 6.3.2, we use the specification of the ASV+SR protocol together with the
client-server setting to perform statistical model checking of QuaTEx formulas analysing
the behavior of ASV+SR under DoS attack using PVeStA.

We want to analyze the QuaTEx formulas defined in Section 6.3.2, but redefine the
formula for the number of client requests due to the introduction of the Server Replicator

127

6. Guaranteeing Stable Availability under Distributed Denial of Service Attacks

meta-object and define a new formula to count the expected number of servers that are
spawned by the Server Replicator. The function time() denotes a state function that returns
the global time value of the current configuration.

Number of client requests. The number of client requests represents the number of REQs
sent by legitimate clients (not including REQs sent by attackers).

requestsReplication(t) = if time() > t then countRequestsReplication()

else © (requestsReplication(t))

with countRequestsReplication() being equal to the client request counter attribute of
the Server Replicator meta-object.

Number of servers. The number of servers represents the number of ASV server objects
that are spawned by the Server Replicator meta-object.

servers(t) = if time() > t then countServers()

else © (servers(t))

with countServers() being equal to the size of the server list attribute of the Server
Replicator meta-object.

As in Section 6.3.2, for the statistical model checking of the aforementioned properties, we
again fix the mean server processing rate S to 600 packets per second, the timeout window
T to 0.4 seconds, the retrial span J to 7, and the client arrival rate ρ to 0.08. Additionally,
an initial generation delay of 0.05 seconds is introduced and the duration of a simulation
is set to 30 seconds. The properties are checked for various attack conditions represented
by the constant α values 0.6666, 3.3333, 6.6666, 13.3333, 26.6666, 40.0, 53.3333, 66.6666,
80.0, 93.3333, 106.6666, 120.0, and 133.3333, which correspond to 1, 5, 10, 20, 40, 60, 80,
100, 120, 140, 160, 180, and 200 attackers (each attacker issues 400 fake REQs per second).
The properties are further checked for a varying overloading factor k (4, 8, 16, and 32) of
the Server Replicator meta-object. The Server Replicator’s check period is fixed to 0.01
seconds. A forward delay and a replication delay are not considered in our experiments.
In the following, we will consider two general cases, in which the Server Replicator can
provision

a) an unlimited number of servers.

b) servers up to a limit m of 5 and 10 servers, because, out of economical considerations
and physical restrictions, it is not possible to assume an unlimited amount of resources.

The results in (a) will indicate how many servers are needed to provide certain service
guarantees while the results in (b) will indicate what service guarantees can be given with
limited resources. The properties for the case (b) are only checked for an overloading factor
of k = 4, because we expect the results to be similar for other overloading factors.

The parameters for each configuration that the properties are checked for are set in the
module ASV-PARAMS. The initial configuration that is used for the statistical model check-
ing using PVeStA is defined in the module ASV-SERVER-REPLICATOR-INIT.

128

6.4. ASV+SR — a 2-Dimensional Protection Mechanism against DDoS Attacks

 70

 75

 80

 85

 90

 95

 100

 0 20 40 60 80 100 120 140 160 180 200

E
xp

ec
te

d
C

lie
nt

 S
uc

es
s

R
at

io
 [%

]

Number of Attackers

ASV
ASV+SR (k=4)
ASV+SR (k=8)

ASV+SR (k=16)
ASV+SR (k=32)

(a) Client success ratio

 0

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100 120 140 160 180 200

E
xp

ec
te

d
A

ve
ra

ge
 T

T
S

 [m
s]

Number of Attackers

ASV
ASV+SR (k=4)
ASV+SR (k=8)

ASV+SR (k=16)
ASV+SR (k=32)

(b) Average TTS

 0

 5000

 10000

 15000

 20000

 25000

 0 20 40 60 80 100 120 140 160 180 200E
xp

ec
te

d
N

um
be

r
of

 C
lie

nt
 R

eq
ue

st
s

Number of Attackers

ASV
ASV+SR (k=4)
ASV+SR (k=8)

ASV+SR (k=16)
ASV+SR (k=32)

(c) Number of client requests

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100 120 140 160 180 200

E
xp

ec
te

d
N

um
be

r
of

 S
er

ve
rs

Number of Attackers

ASV+SR (k=4)
ASV+SR (k=8)

ASV+SR (k=16)
ASV+SR (k=32)

(d) Number of servers

Figure 6.8.: Performance of the ASV+SR protocol with a varying load factor k and no resource
bounds

Unlimited Resources

Figure 6.8 shows the model checking results for a varying load factor k and no resource
limits. As indicated by Figure 6.8(a), the ASV+SR protocol can sustain the expected client
success ratio at a certain percentage. Even for an overloading factor of k = 32, a success
ratio around 95% can be achieved. Figures 6.8(b) and 6.8(c) show that the same is true
for the average TTS and the number of client requests that are sent to the server. Both
values can be sustained at close to constant levels. ASV+SR outperforms the ASV protocol
in all of the performance indicators. However, this is achieved at the cost of provisioning
new servers. Figure 6.8(d) shows how many servers need to be provisioned to keep the
performance indicators at their respective close to constant levels for the varying levels of
attack. Not surprisingly, ASV+SR with an overloading factor of k = 32 requires significantly
fewer resources than with an overloading factor of k = 4.

Limited Resources

Figure 6.9 shows the model checking results for a load factor k = 4 and a limit m of either 5
or 10 servers that the Server Replicator meta-object can provision. As indicated by Figure

129

6. Guaranteeing Stable Availability under Distributed Denial of Service Attacks

 70

 75

 80

 85

 90

 95

 100

 0 20 40 60 80 100 120 140 160 180 200

E
xp

ec
te

d
C

lie
nt

 S
uc

es
s

R
at

io
 [%

]

Number of Attackers

ASV
ASV+SR (k=4, m=∞)

ASV+SR (k=4, m=5)
ASV+SR (k=4, m=10)

(a) Client success ratio

 0

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100 120 140 160 180 200

E
xp

ec
te

d
A

ve
ra

ge
 T

T
S

 [m
s]

Number of Attackers

ASV
ASV+SR (k=4, m=∞)

ASV+SR (k=4, m=5)
ASV+SR (k=4, m=10)

(b) Average TTS

 0

 5000

 10000

 15000

 20000

 25000

 0 20 40 60 80 100 120 140 160 180 200E
xp

ec
te

d
N

um
be

r
of

 C
lie

nt
 R

eq
ue

st
s

Number of Attackers

ASV
ASV+SR (k=4, m=∞)

ASV+SR (k=4, m=5)
ASV+SR (k=4, m=10)

(c) Number of client requests

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100 120 140 160 180 200

E
xp

ec
te

d
N

um
be

r
of

 S
er

ve
rs

Number of Attackers

ASV+SR (k=4, m=∞)
ASV+SR (k=4, m=5)

ASV+SR (k=4, m=10)

(d) Number of servers

Figure 6.9.: Performance of the ASV+SR protocol with a load factor of k = 4 and limited resources

6.9(a), the success ratio can still be kept at a high level under the assumption of limited
resources. In fact, the protocol behaves just as in the case without limited resources up
to the point where more servers than the limit would be needed to keep the success ratio
close to the constant level. After that point, the protocol behaves like the original ASV
protocol (but with the equivalent of a more powerful server) and the success ratio decreases.
Nevertheless, it decreases more slowly since 5 and respectively 10 servers handle the incoming
REQs compared to the one server in the case of the original ASV protocol. Figures 6.9(b)
and 6.9(c) show that the average TTS and the number of client requests behave in a way
similar to that of the success ratio.

6.5. Related Work

Various DoS defense mechanisms exist with an important class of such defenses being
currency-based mechanisms. These mechanisms are characterized by servers that, under
attack conditions, demand payments from clients in some appropriate “currency” such as
actual money [71], CPU cycles [1] (e.g., by solving a puzzle [115]), or, as in the case of ASV
[66], bandwidth. The earliest bandwidth-based defense mechanism that has been proposed

130

6.6. Conclusion

was Selective Verification (SV) [57] which includes no mechanism for adaption (and as such
imposes a high cost on the system). Besides ASV, the class of adaptive bandwidth-based
defense mechanisms also includes the auction-based approach in [113].

The formal analysis of DoS defense mechanisms using probabilistic rewrite theories and
statistical model checking has first been performed for the SV mechanism and TCP SYN
floods-based DoS attacks [4]. A general framework for the formal analysis of DoS defense
mechanisms was proposed in [74]; an information flow-based framework using the Security
Protocols Process Algebra for the evaluation of DoS resistance is given in [69]. Other works
on formal analysis of availability properties use branching-time logics [122, 70]. A formal
analysis of a meta-object-based defense mechanism has been performed for cookie-based
DoS-protection wrappers [33].

6.6. Conclusion

In this chapter, we have shown that we can formally describe reflective Cloud-based archi-
tectures that are protected against DDoS attacks using meta-objects formally specified in
rewriting logic. The meta-objects specified in this chapter, namely, the ASV Wrapper and
the Server Replicator, are based on the modularized actor model which is introduced in
Chapter 5, and define a family of formal meta-object patterns.

We have further shown that the aforementioned specifications of architectures can be sta-
tistically model checked to analyse important qualitative properties. In this chapter, we have
formally analyzed quantitative properties of systems under a DDoS attack, demonstrating
that the ASV and ASV+SR protocols can guarantee high availability and good performance
in hostile environments by adapting to the level of the DoS attack and by using the Cloud’s
capacity to provision new resources on demand.

131

7 C
h

ap
te

r

QoS Analysis of Cloud-based
Publish/Subscribe Systems

Publish/Subscribe is an asynchronous message exchange pattern, in which producers and
consumers of messages are loosely coupled and often communicate via brokers. Brokers
are intermediaries that can select and forward the published information relevant to each
consumer and allow for greater flexibility and scalability in such systems. Quality of service
(QoS) properties such as an on-time delivery of published messages can be crucial for these
systems. Additionally, it is the task of the service management to determine how many
resources should be provisioned for such a system to guarantee certain quality of service
goals. However, several parameters and the unreliability of best-effort networks, especially
when deployed in a worldwide setting, make it difficult to analyze systems based on a
Publish/Subscribe middleware. One further source of uncertainty, and challenge in order to
ensure QoS system requirements, is the variability in the number of users of the service. An
interesting research question is how to enrich a Publish/Subscribe architecture with Cloud-
based dynamic resource provisioning mechanisms to better meet QoS requirements. In the
following, we:

1. give an introduction to Publish/Subscribe systems (Section 7.1),

2. define the model of a stock exchange information system which is built on the foun-
dation of a Publish/Subscribe middleware (Section 7.2),

3. specify a model of the stock exchange information system in Maude (Section 7.3),

4. formally analyze the stock exchange information system model using statistical model
checking (Section 7.4),

133

7. QoS Analysis of Cloud-based Publish/Subscribe Systems

5. extend the model with a Cloud-based mechanism to provision new brokers on demand
(Section 7.5),

6. specify the Cloud-based stock exchange information system in Maude (Section 7.6),
and finally

7. formally analyze the Cloud-based stock exchange information system using statistical
model checking (Section 7.7).

It is the primary goal of this Chapter to show that Publish/Subscribe systems, and en-
hancements of such systems that take advantage of a Cloud computing infrastructure, can
be specified based on the modularized actor model of Chapter 5 and that predictions about
quality of service properties of the specified systems can be made using statistical analysis.
This approach is helpful for the management of Cloud-based systems that rely on a Pub-
lish/Subscribe middleware in order to predict the satisfaction of contracts and to allocate
resources ahead of time.

7.1. Introduction to Publish/Subscribe Systems

Publish/Subscribe is a message exchange pattern and a paradigm for scalable information
dissemination where publishers send new events and subscribers get notified about the new
events they care about asynchronously. This paradigm is often realized in distributed ar-
chitectures such as Web-based architectures, which are asynchronous and loosely coupled
by nature. The W3C [112] describes the need for such a paradigm in the WS-Eventing
specification which defines a protocol for event-based Publish/Subscribe interaction of web
services:

“Web services often want to receive messages when events occur in other services and
applications. A mechanism for registering interest is needed because the set of Web ser-
vices interested in receiving such messages is often unknown in advance or will change
over time. This specification defines a protocol for one Web service (called a "sub-
scriber") to register interest (called a "subscription") with another Web service (called
an "event source") in receiving messages about events (called "notifications"). The
subscriber can manage the subscription by interacting with a Web service (called the
"subscription manager") designated by the event source.”

— WS-Eventing, W3C Candidate Recommendation 28 April 2011

The basic Publish/Subscribe pattern is defined by three actions:

subscribe. A subscriber subscribes to a class of events that is defined by specific event
characteristics.

publish. A publisher asynchronously publishes an event.

forward. Subscribers asynchronously receive published events that they are interest in, i.e.,
the event satisfies the characteristics the subscriber subscribed to.

In addition to subscribers and publishers, the basic system model defines a third intermediary
entity, namely the event service, which manages subscriptions and forwards events. This
service can, but is not limited to, be part of the publishers (denoted as event sources in the
WS-Eventing specification):

134

7.1. Introduction to Publish/Subscribe Systems

“In some scenarios the event source itself manages the subscriptions it has created. In
other scenarios, for example a geographically distributed publish-and-subscribe system,
it might be useful to delegate the management of a subscription [to a different entity].”

— WS-Eventing, W3C Candidate Recommendation 28 April 2011

The Publish/Subscribe communication pattern is closely related to other interaction pat-
terns. The observer design pattern [48] allows objects to observe a subject. The subject
thereby manages a list of observers and automatically notifies them about a state change of
the subject. Hence, the observer pattern is a special case of the Publish/Subscribe pattern
where subscribers subscribe to any event and the event service is part of the publisher. The
Publish/Subscribe pattern is also related to shared data spaces, such as the one defined
by the Linda coordination language (see Section 4.1.1). Using this paradigm, entities in a
distributed environment communicate and synchronize using shared data that is distributed
across multiple localities. A shared data space often allows entities to watch for certain data
in the shared space, which resembles a subscription in the Publish/Subscribe pattern.

Besides the WS-Eventing specification by the W3C, other examples for models of Pub-
lish/Subscribe architectures include the CORBA Notification Service [90] and the Java Mes-
sage Service [91].

7.1.1. Three-dimensional decoupling

Several variations of the Publish/Subscribe pattern exist. The underlying foundation, which
is also the strength, of all of these variants, is a three-dimensional decoupling in space, time,
and synchronization [45].

Decoupling in space. Communicating parties do not need to know about each other. The
only entity known to the subscribers and the publishers is the event service.

Decoupling in time. Communicating parties do not need to be participating in an interac-
tion simultaneously. Events can be stored in the event service and be forwarded to
subscribers at a later point in time.

Decoupling in synchronization. Communicating parties do not need to communicate syn-
chronously. Publishers are not blocked while sending an event to the event service,
and subscribers can be informed about an event asynchronously.

The loose coupling between producers and consumers of information leads to an increased
scalability and flexibility of information dissemination systems. Additionally, a reduction
in coordination and synchronization overhead makes the Publish/Subscribe pattern well
suited for distributed architectures. As we shall argue in this work, these systems can
greatly benefit from Cloud-based architectures to boost their QoS properties.

7.1.2. Types of event filtering

Subscribers specify the characteristics of the events that they are interested in by defining a
filter. Two common ways of defining those characteristics are to use topic-based or content-
based event filtering.

135

7. QoS Analysis of Cloud-based Publish/Subscribe Systems

Publish/Subscribe Middleware

Publisher P1

Publisher P2

. . .

Publisher PN

Broker

Subscriber S1

Subscriber S2

. . .

Subscriber SK

publish

publish

publish

subscribe

subscribe

subscribe

forward

Figure 7.1.: Overview of a broker-based Publish/Subscribe middleware

Topic-based event filtering. In Publish/Subscribe systems that use topic-based event fil-
tering, subscribers subscribe to a specific topic and receive events that are published
using the same topic value. Hence, a topic defines a group of receivers which publishers
broadcast to.

Content-based event filtering. In Publish/Subscribe systems that use content-based event
filtering, subscribers subscribe using so-called predicate filters that define constraints
on the contents or meta-data of events that they are interested in. For example, a
simple way to define constraints for event contents that are made up of numerical
attributes is to compare a specific content attribute (defined by an identifier) with a
specific value. Predicate filters contain single constraints or logical combinations of
constraints.

7.1.3. Broker-based publish/subscribe middleware solutions

Brokers are intermediaries between publishers and subscribers and take the role of the event
service in broker-based Publish/Subscribe systems. A system that encapsulates a broker-
based messaging service can be a middleware for complex applications in distributed systems.
Figure 7.1 illustrates a broker-based Publish/Subscribe middleware. Such systems are not
limited to a single broker but can be based on an overlay network of distributed brokers
to provide fault tolerance, geographical distribution for reduced latencies, and scalability.
Possibilities to coordinate and organize these brokers include tree-based [27, 32, 36] and
peer-to-peer-based [103, 107] approaches.

7.1.4. QoS requirements and resource planning

Several Quality of Service (QoS) goals for Publish/Subscribe systems can be defined. Com-
mon QoS goals include high availability, message delivery guarantees, low time-to-service
(TTS), confidentiality, etc. QoS goals are also strongly correlated with resource planning.
Service providers and consumers often sign service level agreements (SLA) that give QoS
guarantees. Consequently, it is vital for service providers to be able to predict the QoS prop-
erties of their system and to plan and allocate resources to guarantee certain QoS goals.

Some approaches have been proposed to manage QoS contracts for Publish/Subscribe-
based systems [116] or to provide QoS-enabled information dissemination for time-critical

136

7.2. A Stock Exchange Information System

defense systems [114]. Other work focuses on the development of metrics to predict reliability
and timeliness in Publish/Subscribe systems [93].

An area where QoS contracts are most crucial, and where maintaining QoS properties is
not just a matter of costumer satisfaction, are systems like utility grids, such as the energy
grid, or aviation systems. The Washington State University research on the GridStat project
[117], is a Publish/Subscribe middleware framework that provides flexible, robust, timely,
and secure delivery of operational status information for the electric power grid.

7.2. A Stock Exchange Information System

In this section we define a concrete model of a stock exchange information system that
provides current trading information similar to Google finance [55] or Yahoo! Finance [121].
The system is built upon a content-based Publish/Subscribe middleware. Subscribers can
subscribe to trading events that show specific characteristics, such as being related to a
certain listing or being a high-volume trade. The middleware consists of several brokers
that are located across the world. Each trading event has a specific lifetime, and the event
information is only useful to subscribers if they receive it within its lifetime. In our model,
we assume a high frequency1 (one event per second) and low lifetime duration (as low as
one second) event dissemination. This represents a challenging setting, as communication
latencies in a best-effort worldwide network already consume a big fraction, if not all, of the
lifetime. Additionally, the system is flooded with events which may lead to high workloads
at the brokers. We ask three questions regarding this kind of stock exchange information
system:

1. Can a QoS guarantee be made regarding the timely delivery of events?

2. Does the system scale, i.e., how many subscribers can the system handle without
violating the aforementioned QoS guarantee?

3. How many resources should the service provider provision, and what are the expected
operating costs?

In the following, we define the system model in more detail.

7.2.1. Events

Events published in the stock exchange information system contain information about cur-
rent trading activity. An event E ∈ E is defined by the tuple (aE , lE , pE) and encapsulates
content attributes aE , a lifetime duration lE , and the publication time pE. The content
attributes aE contain the values:

Listing LE ∈ N, 1 ≤ LE ≤ 100, is distributed according to a discrete uniform distribution
and specifies which listing (symbol) the trading information is about,

1This system should not be confused with the high frequency trading systems that today operate in milli-
or micro-seconds [58]. Instead, we assume an information system where (potentially collapsed) trading
information is issued in a matter of seconds. We will see that this, together with the fact that the system
operates worldwide, already causes constraints that a Publish/Subscribe system struggles to fulfil.

137

7. QoS Analysis of Cloud-based Publish/Subscribe Systems

Price PE ∈ R, is distributed according to a normal distribution with mean 1000.0 and
standard deviation 100.0 (N (1000.0, 10000.0)) and represents the price of the trading
activity,

Volume VE ∈ N, is distributed according to a discrete Pareto distribution and represents
the volume of the trading activity, and

Type TE ∈ {BUY ,SELL}, is distributed according to a Bernoulli distribution with success
probability 0.5 and specifies whether stock has been bought or sold.

We assume that the event topic is always equal to the listing value, and that the price,
volume, and type values are the per-topic attributes.

Furthermore, we assume that all entities in the system have access to a globally synchro-
nized clock that provides a global time value gt . The lifetime value lE is either 1.0 s, 30.0
s, or 60.0 s. A subscriber receives an event on time if the time that it takes to deliver the
event is less than its lifetime duration, i.e., gt < pE + lE .

A subscriber S ∈ S is not interested in all events that are published in the stock ex-
change information system and therefore defines a predicate filter PFS. Predicate filters are
distributed according to the probability distribution

20% PF 1 := Listing = L

5% PF 2 := Listing = L ∧ Volume ≥ V

2.5% PF 3 := Listing = L ∧ Volume ≥ V ∧ Type = BUY

2.5% PF 4 := Listing = L ∧ Volume ≥ V ∧ Type = SELL

10% PF 5 := Volume ≥ V

10% PF 6 := Listing = L ∧ Price ≥ P

10% PF 7 := Listing = L ∧ Price ≥ P ∧ Type = BUY

10% PF 8 := Listing = L ∧ Price ≥ P ∧ Type = SELL

10% PF 9 := Listing = L ∧ Price ≤ P

10% PF 10 := Listing = L ∧ Price ≤ P ∧ Type = BUY

10% PF 11 := Listing = L ∧ Price ≤ P ∧ Type = SELL

where the listing, the volume, the price, and the type are distributed according to their
respective probability distributions, which have already been specified in the definition of
events.

7.2.2. Network

The network model of the stock exchange information system is an acyclic broker tree with
20 individual brokers (B ∈ {B1, B2, . . . , B20}). Each of the brokers is connected to at least
one neighbor. Each connected pair of brokers is linked via an asynchronous communication
link which has a static latency. Figure 7.2 shows the distribution of the brokers across the
world and the respective static link latencies. The setup of the brokers is expected to lead

138

7.2. A Stock Exchange Information System

B1

B2

B3

B4

B5

B6

B7

B8
B9

B10

B11

B12
B13

B14

B16

B17

B18

B19

B20B15

Link Latency

B1 ↔ B2 20 ms
B2 ↔ B3 20 ms
B2 ↔ B4 60 ms
B4 ↔ B5 20 ms
B4 ↔ B6 60 ms
B5 ↔ B8 20 ms
B5 ↔ B9 140 ms
B6 ↔ B7 160 ms
B9 ↔ B10 10 ms
B9 ↔ B12 20 ms

Link Latency

B10 ↔ B11 30 ms
B12 ↔ B13 80 ms
B12 ↔ B14 20 ms
B14 ↔ B15 80 ms
B15 ↔ B16 160 ms
B15 ↔ B17 80 ms
B17 ↔ B18 180 ms
B17 ↔ B19 120 ms
B19 ↔ B20 30 ms

Mean latency between brokers: ∼ 68.95 ms

Figure 7.2.: Worldwide network setup of the stock exchange Publish/Subscribe system (red brokers
indicate very high expected load; orange brokers indicate high expected load; yellow
brokers indicate normal expected load)

to an unequal distribution of event processing load among the brokers, e.g., we expect that
brokers that have three incoming links and are close to the center of the tree will have a
much higher load than a broker that is a leaf of the tree.

The setup further consists of 100 event publishers P ∈ P and a varying number of sub-
scribers S ∈ S (1–1000). A publisher or subscriber is connected to exactly one broker in
the system. This broker is called its home broker. Publishers and subscribers are connected
to their respective home broker via an asynchronous communication link. This link has a
dynamic latency of around 30.0 ms (in our model, we assume that the latency is distributed

139

7. QoS Analysis of Cloud-based Publish/Subscribe Systems

according to N (30.0, 64.0)).
We further assume that links in our model have no bandwidth limit and that the amount

of messages that are currently transferred over a link do not affect its latency. The chosen
latency values for the communication links between brokers, subscribers and brokers, and
publishers and brokers follow the results of real-world measurements published in [65, 105]
and our own measurements with PlanetLab [92].

7.2.3. Behavior of subscribers, publishers, and brokers

In the following we describe the behavior of subscribers, publishers, and brokers in our stock
exchange information system model.

Subscribers:

1 to 1000 subscribers S ∈ S can join the network by randomly choosing one of the 20 brokers
as their home broker according to a uniform distribution. After joining the network, the
subscribers send a subscription to their respective home broker. A subscription is a message
that is defined by the tuple (S,PFS) and contains an address (initially the address of the
subscriber) and a predicate filter (the predicate filter of the subscriber).

Publishers:

100 publishers P ∈ P join the network and randomly pick one of the 20 brokers as their home
broker according to a uniform distribution. Then, they start publishing randomly generated
events to their respective home broker. A publication is defined by the tuple (P,E) and
encapsulates an address (initially the address of the publisher) and an event. In our model,
publishers publish at a rate of one event per second.

Subscription handling:

When a broker B receives a subscription (S,PFS), it stores the predicate filter PFS and
the address S in a routing table which maps from predicate filters to addresses. The broker
then propagates the subscription to its neighboring brokers as a message (B,PFS). These
brokers, in turn, store the mapping between the predicate filter PFS and the broker B
in their respective routing tables. Each neighboring broker B′ then propagates a message
(B′,PFS) to their neighbors, except for broker B. This process is repeated until, hop by
hop, the whole broker tree has been informed about the new subscription.

If a mapping between a predicate filter PF and an address A is already present in the
routing table of a broker and the broker receives a subscription that contains the same
predicate filter PF but a different destination A′, the mapping in the routing table is updated
to map from the predicate filter PF to both, A and A′. Indeed, a predicate filter can map
to an arbitrary list of addresses. If a mapping between a predicate filter PF and an address
A is already present in the routing table of a broker and the broker receives the subscription
(A,PF) that suggests the same mapping, the broker does not alter its routing table and only
forwards the subscription, i.e., the routing table is free of duplicates. Again, as the predicate
filter can map to a list of addresses, it is sufficient that the list of addresses contains the
address A.

140

7.2. A Stock Exchange Information System

Broker Tree

S1

P

B12 B13 S2

B14 S3

→ (S1, PFS1
)

PFS1
:= L = 1

∧ P ≤ 20.45

PFS2
:= L = 2

∧ P ≥ 30.15

PFS3
:= L = 2

∧ P ≥ 50.00

Routing tables prior to the subscription of S1

Broker Routing Table

B12 L = "B" ∧ P ≥ 30.15 7→ B13

L = "B" ∧ P ≥ 50.00 7→ B14

B13 L = "B" ∧ P ≥ 30.15 7→ S2

B14 L = "B" ∧ P ≥ 50.00 7→ S3

Routing tables after the subscription of S1

Broker Routing Table

B12 L = "B" ∧ P ≥ 30.15 7→ B13

L = "B" ∧ P ≥ 50.00 7→ B14

L = "A" ∧ P ≤ 20.45 7→ S1

B13 L = "B" ∧ P ≥ 30.15 7→ S2

L = "A" ∧ P ≤ 20.45 7→ B12

B14 L = "B" ∧ P ≥ 50.00 7→ S3

L = "A" ∧ P ≤ 20.45 7→ B12

Figure 7.3.: S1 subscribes to the broker tree by sending a subscription message to its home broker
B12

In our model we assume that a subscription and the following subscription propagation
are processed instantaneously.

Example 7.1: Subscription propagation in a subset of the stock exchange infor-
mation system
To illustrate how subscription propagation works in our model, we consider the subset of
the stock exchange information system consisting of the brokers B12, B13, and B14. The
subscribers S2 and S3 are already subscribed to the system. S1 subscribes to the system by
sending the subscription message (S,PFS1

) to its home broker B12. Figure 7.3 shows the
broker tree and the routing tables prior to and after the subscription of S1.

Publication handling:

Upon receiving a publication message of the event E = (aE , lE , pE), a broker first checks if
the event has expired, i.e., if gt < lE + pE. If it has, the broker drops the message, because
the content is already outdated and useless to subscribers. Otherwise, the event and its
sender are enqueued in an event queue. In our model the queue is theoretically unbounded
in size. The broker processes the events in the event queue in a FIFO order. An event is
processed by evaluating it against the predicate filters in the routing table. In our model
we assume that a broker needs 1 ms of processing time to evaluate an event against a single
predicate filter. Hence, processing of an event at a broker whose routing table contains k
predicate filter entries takes k ms. When the event passes a predicate filter of the routing
table, the event is forwarded to the addresses the filter maps to. Events are only propagated
forward in the broker tree. Thus, if one of the mapped addresses is the address of the sender

141

7. QoS Analysis of Cloud-based Publish/Subscribe Systems

of the event, the event is not forwarded to that address. Additionally, an event is only
forwarded once per outgoing link. The forwarded publication message contains the event
and the broker’s address as the sender.

Example 7.2: Event publishing in a subset of the stock exchange information
system
In the following we show an example of how a published event is forwarded by brokers
in a broker tree. In this example, a subset of the broker, namely, the brokers B12, B13,
and B14 form the broker tree. The three subscribers S1, S2, and S3 are subscribed with
their predicate filters PFS1

:= L = 1 ∧ P ≤ 20.45, PFS2
:= L = 2 ∧ P ≥ 30.15, and

PFS3
:= L = 2 ∧ P ≥ 50.00. Subscriber S1 is subscribed to broker B12, subscriber S2 to

broker B13, and subscriber S3 to broker B14. Additionally, the publisher P publishes the
new event (2, 40.0, 10,BUY , 1.0, 0.0) to its home broker B12. We assume that the global
time gt starts at 0.0.

First, P sends the event (2, 40.0, 10,BUY , 1.0, 0.0) to its home broker B12. The current
latency of the link P ↔ B12 is 25 ms.

Broker Tree

S1

P

B12 B13 S2

B14 S3↑ (2, 40.0, 10,BUY , 1.0, 0.0)

PFS1
:= L = 1

∧ P ≤ 20.45

PFS2
:= L = 2

∧ P ≥ 30.15

PFS3
:= L = 2

∧ P ≥ 50.00

gt = 0.0

The global time advances to 0.025. Then, B12 receives the event and checks if the received
event has expired (0.0+1.0 > 0.025). As the event has not expired, B12 processes the received
event using its routing table. The processing time is 3 ms, because three entries are in the
routing table of broker B12.

Broker Tree

S1

P

B12 B13 S2

B14 S3

y (2, 40.0, 10,BUY , 1.0, 0.0)

PFS1
:= L = 1

∧ P ≤ 20.45

PFS2
:= L = 2

∧ P ≥ 30.15

PFS3
:= L = 2

∧ P ≥ 50.00

Routing table of B12:
L = 1 ∧ P ≤ 20.45 7→ S1

L = 2 ∧ P ≥ 30.15 7→ B13

L = 2 ∧ P ≥ 50.00 7→ B14

gt = 0.025

142

7.2. A Stock Exchange Information System

The global time advances to 0.028. B12 finishes the processing of the event and forwards
it to B13 and B14 because the predicate filters that map to these addresses passed the event.
The event is not forwarded to S1, because the listing that is defined in the predicate filter
already differs from the event’s listing. The latency of the link B12 ↔ B13 is 80 ms and the
latency of the link B12 ↔ B14 is 20 ms.

Broker Tree

S1

P

B12 B13 S2

B14 S3

→ (2, 40.0, 10,BUY , 1.0, 0.0)

↓ (2, 40.0, 10,BUY , 1.0, 0.0)

PFS1
:= L = 1

∧ P ≤ 20.45

PFS2
:= L = 2

∧ P ≥ 30.15

PFS3
:= L = 2

∧ P ≥ 50.00

gt = 0.028

The global time advances to 0.048. Then, B14 receives the event and checks if the event
has expired (0.0 + 1.0 > 0.048). As the event has not expired, B14 processes the received
event using its routing table. The processing time is 3 ms because three entries are in the
routing table of broker B14. The message that forwards the event from broker B12 to broker
B13 is still on its way.

Broker Tree

S1

P

B12 B13 S2

B14 S3

→ (2, 40.0, 10,BUY , 1.0, 0.0)

PFS1
:= L = 1

∧ P ≤ 20.45

PFS2
:= L = 2

∧ P ≥ 30.15

PFS3
:= L = 2

∧ P ≥ 50.00

y (2, 40.0, 10,BUY , 1.0, 0.0)

Routing table of B14:
L = 2 ∧ P ≥ 50.00 7→ S3

L = 1 ∧ P ≤ 20.45 7→ B12

L = 2 ∧ P ≥ 30.15 7→ B12

gt = 0.048

The global time advances to 0.051. B14 finishes the processing of the event and forwards
it to S3. The current latency of the link B14 ↔ S3 is 30 ms. In the meantime, the message
that forwards the event from broker B12 to broker B13 is still on its way.

143

7. QoS Analysis of Cloud-based Publish/Subscribe Systems

Broker Tree

S1

P

B12 B13 S2

B14 S3

→ (2, 40.0, 10,BUY , 1.0, 0.0)

→ (2, 40.0, 10,BUY , 1.0, 0.0)

PFS1
:= L = 1

∧ P ≤ 20.45

PFS2
:= L = 2

∧ P ≥ 30.15

PFS3
:= L = 2

∧ P ≥ 50.00

gt = 0.051

The global time advances to 0.081 and S3 receives the event.

Broker Tree

S1

P

B12 B13 S2

B14 S3

→ (2, 40.0, 10,BUY , 1.0, 0.0)

PFS1
:= L = 1

∧ P ≤ 20.45

PFS2
:= L = 2

∧ P ≥ 30.15

PFS3
:= L = 2

∧ P ≥ 50.00

gt = 0.081

The global time advances to 0.108. B13 receives the event and checks if it has expired
(0.0 + 1.0 > 0.108). As the event has not expired, B13 starts processing the event. The
processing time is 3 ms since three entries are in the routing table of broker B13.

Broker Tree

S1

P

B12 B13 S2

B14 S3

PFS1
:= L = 1

∧ P ≤ 20.45

PFS2
:= L = 2

∧ P ≥ 30.15

PFS3
:= L = 2

∧ P ≥ 50.00

y (2, 40.0, 10,BUY , 1.0, 0.0)

Routing table of B13:
L = 2 ∧ P ≥ 30.15 7→ S2

L = 1 ∧ P ≤ 20.45 7→ B12

L = 2 ∧ P ≥ 50.00 7→ B12

gt = 0.108

The global time advances to 0.111. B13 finishes processing of the event and forwards it
to S2. The current latency of the link B13 ↔ S2 is 39 ms.

144

7.3. Specification of the Stock Exchange Information System in Maude

Broker Tree

S1

P

B12 B13 S2

B14 S3

PFS1
:= L = 1

∧ P ≤ 20.45

PFS2
:= L = 2

∧ P ≥ 30.15

PFS3
:= L = 2

∧ P ≥ 50.00

→ (2, 40.0, 10,BUY , 1.0, 0.0)

gt = 0.111

The global time advances to 0.150. Finally, S2 receives the event.

Broker Tree

S1

P

B12 B13 S2

B14 S3

→ (2, 40.0, 10,BUY , 1.0, 0.0)

PFS1
:= L = 1

∧ P ≤ 20.45

PFS2
:= L = 2

∧ P ≥ 30.15

PFS3
:= L = 2

∧ P ≥ 50.00

gt = 0.150

7.3. Specification of the Stock Exchange Information System

in Maude

In this section we describe the Maude-based specification of the stock exchange information
system that was described at a high level in the previous section. We base the specification
on the modularized actor model that is described in Chapter 5. Additionally, we use the
generic module SAMPLER (see Appendix C.1).

7.3.1. Overview of the Maude specification

Figure 7.4 gives an overview of the Maude modules comprising the specification and their
structural dependencies. The functional modules EVENT, ROUTING, NETWORK define
the basic syntax for events, routing tables, and the network graph, and provide operators
to interact with the defined concepts. The functional module PARAMS defines the model
parameters. Finally, the functional module CONFIGURATION defines the actor types, at-
tributes, and messages used by the stock exchange information system model. The modules
PUBLISHER, SUBSCRIBER, BROKER, and GENERATOR specify the behavioral rules of
the actors in the model. The module PUBLISH-SUBSCRIBE defines the initial state of the
system. The modules STOCK-EXCHANGE-PARAMS and STOCK-EXCHANGE provide

145

7. QoS Analysis of Cloud-based Publish/Subscribe Systems

PUBLISH-
SUBSCRIBE-
ANALYSIS

PUBLISH-
SUBSCRIBE

ANALYSIS

PUBLISHER SUBSCRIBER BROKER GENERATOR
MODEL-
PARAMS

CONFIGURATION

NETWORK

PARAMS ROUTING
STOCK-
EXCHANGE

EVENT
STOCK-
EXCHANGE-
PARAMS

Figure 7.4.: Overview of the Maude specification of the stock exchange information system model

146

7.3. Specification of the Stock Exchange Information System in Maude

generators to randomly create trading events and respective predicate filters. Finally, the
modules MODEL-PARAMS, ANALYSIS, PUBLISH-SUBSCRIBE-ANAYLSIS instantiate
the model parameters and are used for the formal analysis of the system model.

7.3.2. Description of the modules

In the following, we give an in-depth description of each of the modules.

The module EVENT

An event is a triple whose first component is a pair, of sort ContentAttributes, of a topic
and a list of attributes for the event, and whose second and third components are floating
point numbers respectively describing the event’s lifetime duration and its publishing time.
Events are a message content (of sort Content)

sort Event ContentsAttributes .

subsort Event < Content .

and are constructed by the operator

op event : ContentsAttributes Float Float -> Event [ctor] .

An event is said to be on time if the current global time is less or equal than the sum of the
publishing time and the lifetime duration.

The set of attributes of an event is a set of floating point values of sort Floats. A topic
(of sort Topic) is thereby a special kind of value, i.e., a subsort of sort Value. Both topics
and individual floating point numbers are values of sort Value.

sort Floats Topic Value .

subsort Float < Floats .

subsort Float Topic < Value .

The set of floating point per-topic attribute values is constructed by the operators

op nilFloats : -> Floats .

op _,_ : Floats Floats -> Floats [ctor assoc id: nilFloats] .

Topics are constructed by the operator

op topic : Nat -> Topic [ctor] .

which takes a natural number as argument. The constructor for contents attributes

op [_,_] : Topic Values -> ContentsAttributes [ctor gather(e E)] .

concatenates and encapsulates a topic and the per-topic attributes in a single term.
Event queues (of sort QueueWithSize) are used by brokers to store events for future pro-

cessing. An event queue essentially is a contents queue (of sort ContentsQueue) which itself
consists of message contents concatenated with the queue size.

sort QueueWithSize ContentsQueue .

subsort Content < ContentsQueue .

The operators

op nilQueue : -> ContentsQueue [ctor] .

op _;_ : ContentsQueue ContentsQueue -> ContentsQueue [ctor assoc id: nilQueue] .

op [_,_] : Nat ContentsQueue -> QueueWithSize [ctor] .

147

7. QoS Analysis of Cloud-based Publish/Subscribe Systems

construct event queues.
Predicate filters (of sort PredicateFilter) define what information a subscriber is interested

in. Predicate filters consist of filter rules (of sort FilterRule) that specify a filter for a specific
attribute (defined by a term of sort ValuePosition) of an event’s contents attributes. A filter
rule compares the value in the contents attributes with the value in the filter rule using a
binary operator (of sort Operator).

sort PredicateFilter FilterRule ValuePosition Operator .

subsort FilterRule < PredicateFilter .

In our model, we use the operators <=, >=, and ==, which are already predefined for floating
point numbers in Maude.

ops <= >= == : -> Operator [ctor] .

A value position, i.e., the position in the list of floats in the contents attributes of an event
will always correspond, for a given event topic, to a predetermined attribute of the event, so
that looking up that position in the list of floats will yield the attribute’s value. Positions
are constructed by the operator

op pos : Nat -> ValuePosition [ctor] .

A filter rule is constructed by the operators

op nilFilter : -> FilterRule [ctor] .

op ___ : ValuePosition Operator Value -> FilterRule [ctor] .

Finally, predicate filters are constructed by the operator

op _;_ : PredicateFilter PredicateFilter -> PredicateFilter

[ctor assoc comm id: nilFilter] .

and are queried by the operator

op evalFilter : ContentAttributes PredicateFilter -> Bool .

which takes contents attributes and a predicate filter as arguments and returns a Boolean
value indicating whether the predicate filter accepts (true) or rejects (false) the contents
attributes. For the definition of the behavior of the evaluation operator, the variables

vars EID POS POS’ TID : Nat .

var T : Topic .

vars VAL VAL’ : Value .

var VALS : Values .

var D : Float .

var PF : PredicateFilter .

var FR : FilterRule .

var OP : Operator .

are used. The auxiliary operators

op evalRule : Values FilterRule Nat -> Bool .

op compare : Value Operator Value -> Bool .

evaluate a single rule and a single pair of values. The operator compare is defined by the
equations

ceq compare(VAL, OP, VAL’) = VAL <= VAL’ if OP := <= .

ceq compare(VAL, OP, VAL’) = VAL >= VAL’ if OP := >= .

ceq compare(VAL, OP, VAL’) = VAL == VAL’ if OP := == .

148

7.3. Specification of the Stock Exchange Information System in Maude

which simply define the comparison to behave like the comparison of floating point values.
The operator to evaluate a single rule evalRule is defined by the equation

eq evalRule((VAL, VALS), pos(POS) OP VAL’, POS’) =

if POS == POS’ then

compare(VAL, OP, VAL’)

else

evalRule(VALS, pos(POS) OP VAL’, s(POS’)) fi .

which applies the filter rule to the appropriate value of the contents attributes. Finally, the
operator evalFilter is defined by the equations

eq evalFilter([T, VALS], nilFilter) = true .

eq evalFilter([T, VALS], (pos(0) == VAL) ; PF) =

T == VAL and evalFilter([T, VALS], PF) .

eq evalFilter([T, VALS], FR ; PF) =

evalRule(VALS, FR, 1) and evalFilter([T, VALS], PF) .

which recursively apply the single filter rules of the predicate filter to the specified content
attributes.

The module ROUTING

The module ROUTING defines the routing table (of sort RoutingTable) of a broker. Routing
tables consist of single routings (of sort Routing), which map a predicate filter to an address
list. A term of sort TableWithSize concatenates a routing table with its size.

sort TableWithSize RoutingTable Routing .

subsort Routing < RoutingTable .

Single routings are constructed by the operators

op nilRouting : -> RoutingTable [ctor] .

op _->_ : PredicateFilter AddressList -> Routing [ctor] .

A routing table is constructed by the operator

op _;_ : RoutingTable RoutingTable -> RoutingTable

[ctor assoc comm id: nilRouting] .

Finally, terms of sort TableWithSize are constructed by the operator

op [_,_] : Nat RoutingTable -> TableWithSize [ctor] .

The module NETWORK

The module NETWORK defines communication links and the structure of the network.
Links are constructed by the operator

sort Link Latency .

subsort Float < Latency .

op [_,_] : Address Latency -> Link [ctor] .

which takes an address and a latency (of sort Latency) as arguments. In our model, latencies
are defined by floating point numbers and represent the latency value in seconds.

The network is defined as an adjacency list that represents all edges of the network graph.
A link list (of sort LinkList) is defined to concatenate links.

149

7. QoS Analysis of Cloud-based Publish/Subscribe Systems

sort LinkList .

subsort Link < LinkList .

op _;_ : LinkList LinkList -> LinkList [ctor assoc comm] .

Mappings (of sort Mapping) between an address and a link list are the component of the
adjacency list. Mappings are constructed by the operator

sort Mapping .

op _->_ : Address LinkList -> Mapping [ctor] .

Finally, an adjacency list (of sort AdjacencyList) is constructed by a mapping or the concate-
nation of mappings.

sort AdjacencyList .

subsort Mapping < AdjacencyList .

op _;_ : AdjacencyList AdjacencyList -> AdjacencyList [ctor assoc comm] .

The constant

op network : -> AdjacencyList .

defines the network configuration of the model and is considered global knowledge. The
network can be queried using the operator

op latency : Address Address -> Latency [memo] .

which determines the latency between two given addresses. For the description of the be-
havior of the operator, the variables

var FROM A TO : Address .

var LL : LinkList .

var AL : AdjacencyList .

var L : Latency .

are used. The auxiliary operators

op getList : AdjacencyList Address Address -> Latency .

op getLink : LinkList Address -> Latency .

are called by the latency operator. The equations

eq getList(FROM -> LL, FROM, TO) = getLink(LL, TO) .

eq getList((A -> LL) ; AL, FROM, TO) =

if A == FROM then

getLink(LL, TO)

else

getList(AL, FROM, TO) fi .

define the operator getList, which, for a given source address, retrieves the mapped link list
from the adjacency list and calls the operator getLink. The operator getLink which takes the
list and the destination address as arguments proceeds as described by the equations

eq getLink([TO, L], TO) = L .

eq getLink([A, L] ; LL, TO) =

if A == TO then

L

else

getLink(LL, TO) fi .

and retrieves the appropriate latency of the link between the two addresses. Finally, the
operator latency is just an abbreviation that abstracts from the adjacency list that is used.

150

7.3. Specification of the Stock Exchange Information System in Maude

eq latency(FROM, TO) = getList(network, FROM, TO) .

In the Maude specification, the network described in Section 7.2 and shown in Figure 7.2
is defined by the equation (the adjacency list) that defines the network constant.

eq network =

(1 -> [2, 0.02]) ;

(2 -> [1, 0.02] ; [3, 0.02] ; [4, 0.06]) ;

(3 -> [2, 0.02]) ;

(4 -> [2, 0.06] ; [5, 0.02] ; [6, 0.06]) ;

(5 -> [4, 0.02] ; [8, 0.02] ; [9, 0.14]) ;

(6 -> [4, 0.06] ; [7, 0.16]) ;

(7 -> [6, 0.16]) ;

(8 -> [5, 0.02]) ;

(9 -> [5, 0.14] ; [10, 0.01] ; [12, 0.02]) ;

(10 -> [9, 0.01] ; [11, 0.03]) ;

(11 -> [10, 0.03]) ;

(12 -> [9, 0.02] ; [13, 0.08] ; [14, 0.02]) ;

(13 -> [12, 0.08]) ;

(14 -> [12, 0.02] ; [15, 0.08]) ;

(15 -> [14, 0.08] ; [16, 0.16] ; [17, 0.08]) ;

(16 -> [15, 0.16]) ;

(17 -> [15, 0.08] ; [18, 0.18] ; [19, 0.12]) ;

(18 -> [17, 0.18]) ;

(19 -> [17, 0.12] ; [20, 0.03]) ;

(20 -> [19, 0.03]) .

The module PARAMS

In the module PARAMS, the constant operators

op LIMIT : -> [Float] .

op initDelay : -> [Float] .

op numBrokers : -> [Nat] .

op numSubscribers : -> [Nat] .

op numPublishers : -> [Nat] .

op pubRate : -> [Float] .

op lifetime : -> [Float] .

op procRate : -> [Float] .

op latency : -> [Float] .

op latencyMean : -> [Float] .

op latencyStdDev : -> [Float] .

op predicateFilterGenerator : -> [PredicateFilter] .

op contentsAttributesGenerator : -> [ContentsAttributes] .

are defined, which represent the parameters of the Publish/Subscribe system model. The
model, even though it is specifically made for the stock exchange system, is specified in a
generic way. Therefore, the foundations of the model can be reused for other specifications
of broker trees and content-based Publish/Subscribe systems.

151

7. QoS Analysis of Cloud-based Publish/Subscribe Systems

The module CONFIGURATION

The module CONFIGURATION defines the actor types

op Subscriber : -> ActorType [ctor] .

op Publisher : -> ActorType [ctor] .

op Broker : -> ActorType [ctor] .

Additionally, the two actor types

op SubscriberGenerator : -> ActorType [ctor] .

op PublisherGenerator : -> ActorType [ctor] .

are defined, which represent the actor types of the actors that respectively generate pub-
lishers and subscribers.

The home broker attribute is constructed by the operator

op homeBroker:_ : Address -> Attribute [gather(&)] .

which takes the address of the home broker as an argument. This attribute is used by both,
the subscribers and the publishers.

The attributes

op predicateFilter:_ : PredicateFilter -> Attribute [gather(&)] .

op recCnt:_ : Nat -> Attribute[gather(&)] .

op avgTTS:_ : Float -> Attribute[gather(&)] .

are specific attributes of the subscribers. The attribute predicateFilter contains a sub-
scriber’s predicate filter. The attributes recCnt and avgTTS keep track of the number of
incoming events and the average time it takes for these events to be delivered by the sys-
tem.

The attributes

op routingTable:_ : TableWithSize -> Attribute [gather(&)] .

op neighbors:_ : AddressList -> Attribute [gather(&)] .

op subscribers:_ : AddressList -> Attribute [gather(&)] .

op eventQueue:_ : QueueWithSize -> Attribute [gather(&)] .

op drops:_ : Nat -> Attribute [gather(&)] .

op forwards:_ : Nat -> Attribute [gather(&)] .

op sent:_ : Nat -> Attribute [gather(&)] .

are specific attributes of the brokers. The attribute routingTable holds the routing table of
the broker, the attribute neighbors holds an address list of neighboring brokers, the attribute
subscribers holds an address list of subscribers that are subscribed to the broker, and the
attribute eventQueue holds the broker’s event queue. Finally, the attributes drops, forwards,
and sent keep track of how many events have been dropped and forwarded and how many
packets have been sent by the broker.

When a subscriber subscribes to its home broker, it sends a message with the message
content

op subscribe : Address PredicateFilter -> Content .

Internally, this subscription is propagated by messages with the message content

op propagate : Address PredicateFilter -> Content .

Publishers publish events and brokers propagate events by sending messages with the mes-
sage content

152

7.3. Specification of the Stock Exchange Information System in Maude

op publish : Address Event -> Content .

Additionally, the auxiliary message contents

op start : -> Content .

op pubTick : -> Content .

op procTick : -> Content .

op generate : -> Content .

are defined and are specific to the Maude specification of the stock exchange information
system’s behavior.

The module PUBLISHER

The module PUBLISHER defines the behavior of the publishers in the system. The rule

var gt : Float .

var AS : AttributeSet .

var A HB : Address .

rl [Publish] :

< A : Publisher | homeBroker: HB, AS >

{gt, (A <- pubTick)}

=>

< A : Publisher | homeBroker: HB, AS >

[gt + latency,

(HB <- publish(A, event(contentsAttributesGenerator, lifetime, gt)))]

[gt + pubRate, (A <- pubTick)] .

specifies that when a publisher receives a message with the message content pubTick, it
generates a new event using the contents attribute generator and sends the newly generated
event as a publication to its home broker. Furthermore, it schedules its next publication
tick.

The module SUBSCRIBER

The module SUBSCRIBER defines the behavior of the subscribers in the system. The
variables

vars gt d s AVGTTS : Float .

var CNT : Nat .

var AS : AttributeSet .

var PF : PredicateFilter .

var CA : ContentAttributes .

vars A HB : Address .

are used for the description of the rules.
The rule

rl [Subscribe] :

< A : Subscriber | homeBroker: HB, predicateFilter: PF, AS >

{gt, (A <- start)}

=>

< A : Subscriber | homeBroker: HB, predicateFilter: PF, AS >

[gt, (HB <- subscribe(A, PF))] .

153

7. QoS Analysis of Cloud-based Publish/Subscribe Systems

states that upon receiving a message with the message content start, a subscriber subscribes
to its home broker by sending a message with the message contents subscribe, which contains
its address and its predicate filter.

The rule

rl [Receive-Publish] :

< A : Subscriber | recCnt: CNT, avgTTS: AVGTTS, AS >

{gt, (A <- publish(HB, event(CA, d, s)))}

=>

< A : Subscriber | recCnt: s(CNT),

avgTTS: AVGTTS + (((gt - s) - AVGTTS) / float(s(CNT))), AS > .

specifies that when an event publication is received by a subscriber, the subscriber consumes
the messages and updates its statistical attributes recCnt and avgTTS. The average time to
subscriber attribute is thereby updated as a cumulative ongoing average.

The module GENERATOR

The module GENERATOR describes the behavior of the generator actors which gener-
ate subscribers and publishers. For the description of the behavior of the generators, the
variables

vars gt r : Float .

var SL : ScheduleList .

var N : Nat .

var A : Address .

var NG : NameGenerator .

are used.
The operator

op generateSubscribers : Float NameGenerator -> [Config] .

takes a global time and a name generator as arguments and returns a configuration that
contains the generated subscribers. This operator calls the auxiliary operator

op generateSubscribersRec : Float NameGenerator Nat -> [Config] .

which takes the number of subscribers it should generate as an additional argument. The
behavior of the operator generateSubscribersRec is defined by the equations

eq generateSubscribersRec(gt, NG, 0) = NG .

eq generateSubscribersRec(gt, NG, s(N)) =

< NG .new : Subscriber |

homeBroker: s(sampleUniWithInt(numBrokers)),

predicateFilter: predicateFilterGenerator,

recCnt: 0,

avgTTS: 0.0 >

[gt, (NG .new <- start)]

generateSubscribersRec(gt, NG .next, N) .

which generate the specified number of subscribers. The newly generated subscribers have
a predicate filter that is generated by the predicate filter generator and a home broker that
is uniformly chosen from the available brokers2. In addition to the subscribers, the returned

2This way of randomly choosing one of the brokers as a home broker is possible due to a fixed initial con-
figuration of the stock exchange information system model that statically defines the broker’s addresses
to be 1–20.

154

7.3. Specification of the Stock Exchange Information System in Maude

configuration also contains scheduled messages to start the subscribers and the updated
name generator. Finally, the behavior of the operator generateSubscribers is defined by the
equation

eq generateSubscribers(gt, NG) = generateSubscribersRec(gt, NG, numSubscribers) .

which states that the operator calls the operator generateSubscribersRec with the number of
subscribers that is specified in the module PARAMS as an additional argument.

The rule

rl [Generate-Subscribers] :

NG

< A : SubscriberGenerator | mt >

{gt, (A <- generate)}

=>

generateSubscribers(gt, NG) .

specifies that, upon receiving a message with message contents generate, a subscriber gen-
erator generates the subscribers and removes itself from the configuration.

Similar to the generation of subscribers, publishers are generated by the operator

op generatePublishers : Float NameGenerator -> [Config] .

and the auxiliary operator

op generatePublishersRec : Float NameGenerator Nat -> [Config] .

that are defined by the equations

eq generatePublishers(gt, NG) =

generatePublishersRec(gt, NG, numPublishers) .

eq generatePublishersRec(gt, NG, 0) = NG .

eq generatePublishersRec(gt, NG, s(N)) =

< NG .new : Publisher |

homeBroker: s(sampleUniWithInt(numBrokers)) >

[gt + initDelay, (NG .new <- pubTick)]

generatePublishersRec(gt, NG .next, N) .

A difference lies in the messages that are generated. The messages for the publishers contain
the message contents pubTick and are scheduled to become active after a specified time period
— an initial delay (initDelay).

The rule

rl [Generate-Publishers] :

NG

< A : PublisherGenerator | mt >

{gt, (A <- generate)}

=>

generatePublishers(gt, NG) .

specifies that, upon receiving a message with message contents generate, a publisher gener-
ator generates the publishers and removes itself from the configuration.

The module BROKER

The module BROKER defines the behavior of brokers in the stock exchange information
system model. The tasks of brokers can be divided into two categories: the propagation of

155

7. QoS Analysis of Cloud-based Publish/Subscribe Systems

subscriptions, and the handling of event publications. For the description of the behavior of
the brokers, the variables

vars gt d s : Float .

var L : Latency .

vars F D SENT SZ SZ1 SZ2 SZ1’ DROPPED : Nat .

vars PF PF1 PF2 : PredicateFilter .

var AS : AttributeSet .

var R : Routing .

vars RT RT1 RT2 : RoutingTable .

var E : Event .

var CA : ContentsAttributes .

vars CQ CQ’ : ContentsQueue .

vars A B NE FROM BROKER TO : Address .

vars AL AL’ N S : AddressList .

var Q : QueueWithSize .

are used.

Propagation of subscriptions: The operator

op insertSubscription : Routing TableWithSize -> TableWithSize .

inserts a routing into a broker’s routing table. The operator calls the auxiliary operator

op insertSubscriptionRec : Routing RoutingTable TableWithSize

-> TableWithSize .

eq insertSubscription(R, [SZ, RT]) =

insertSubscriptionRec(R, RT, [SZ, nilRouting]) .

which recursively traverses the existing routing table and checks if either the whole routing
or the predicate filter are already present in the table. If the routing is already present in
the table, the routing is discarded. Otherwise, if the predicate filter of the routing is already
in the table, the routing’s destination is added to the mapping of that predicate filter in the
routing table. If none of the aforementioned cases occur, the routing as a whole is added to
the routing table. This behavior is defined by the equations

eq insertSubscriptionRec((PF -> A), nilRouting, [SZ, RT]) =

[s(SZ), (PF -> A) ; RT] .

eq insertSubscriptionRec((PF1 -> A), (PF2 -> AL) ; RT1, [SZ, RT2]) =

if PF1 == PF2 then

if not(A in AL) then

[SZ, (PF2 -> A ; AL) ; RT1 ; RT2]

else

[SZ, (PF2 -> AL) ; RT1 ; RT2] fi

else

insertSubscriptionRec((PF1 -> A), RT1, [SZ, (PF2 -> AL) ; RT2]) fi .

The operator

op generatePropagate : Float AddressList Address Address PredicateFilter

-> Config .

generates messages to propagate subscriptions in the broker tree and is defined by the
equations

eq generatePropagate(gt, mtAddressList, FROM, BROKER, PF) = null .

eq generatePropagate(gt, TO ; AL, FROM, BROKER, PF) =

156

7.3. Specification of the Stock Exchange Information System in Maude

if TO =/= FROM then

[gt, (TO <- propagate(BROKER, PF))]

generatePropagate(gt, AL, FROM, BROKER, PF)

else

generatePropagate(gt, AL, FROM, BROKER, PF) fi .

The rule

rl [Receive-Subscription] :

< B : Broker |

routingTable: [SZ, RT],

neighbors: N,

subscribers: S, AS >

{gt, (B <- subscribe(A, PF))}

=>

< B : Broker |

routingTable: insertSubscription((PF -> A), [SZ, RT]),

neighbors: N,

subscribers: (A ; S), AS >

generatePropagate(gt, N, A, B, PF) .

states, that upon receiving a subscription from a subscriber, a broker inserts the subscriber’s
address to its list of subscribers, inserts the subscription to its routing table, and propagates
the subscription to its neighbors in the form of a message with message contents propagate.

When a broker receives a message with message contents propagate, the rule

rl [Receive-Propagate] :

< B : Broker |

routingTable: [SZ, RT],

neighbors: N, AS >

{gt, (B <- propagate(A, PF))}

=>

< B : Broker |

routingTable: insertSubscription((PF -> A), [SZ, RT]),

neighbors: N, AS >

generatePropagate(gt, N, A, B, PF) .

states, that the broker inserts the subscription to its routing table and propagates the
subscription to its neighbors.

Handling of event publications: When a broker receives an expired event, i.e., when
the current time is greater or equal to the sum of the publication time and the lifetime
duration of the event, it drops the received event. This behavior is specified by the rule

crl [Broker-Receive-Drop] :

< B : Broker |

drops: D, AS >

{gt, (B <- publish(FROM, event(CA, d, s)))}

=>

< B : Broker |

drops: s(D), AS >

if gt >= s + d .

If a broker receives an event that has not expired, the rule

crl [Broker-Receive-Process] :

< B : Broker |

157

7. QoS Analysis of Cloud-based Publish/Subscribe Systems

eventQueue: [SZ1, CQ],

routingTable: [SZ2, RT], AS >

{gt, (B <- publish(FROM, event(CA, d, s)))}

=>

< B : Broker |

eventQueue: [s(SZ1), CQ ; publish(FROM, event(CA, d, s))],

routingTable: [SZ2, RT], AS >

if SZ1 == 0 then

[gt + float(SZ2) * procRate, (B <- procTick)]

else

null

fi

if gt < d .

states that the received message contents (publish) is inserted into the local event queue.
Additionally, if the queue was empty prior to the insertion, a self-addressed processing tick
message (with the message contents procTick) is scheduled. The processing time (defined by
the scheduled arrival time of the message) is thereby proportional to the size of the broker’s
routing table.

When a broker receives a processing tick message, it is forwarded to the neighboring actors
that are interested in the processed event. Additionally, the event queue is cleaned at the
end of the processing tick. This means that, as long as an expired event is at the beginning
of the queue, the event will be dropped until either there is an event at the beginning of the
queue that has not expired or the event queue is empty. The sort CleanQueue concatenates a
cleaned event queue with the number of events that have been dropped from the queue.

sort CleanQueue .

op {_,_} : QueueWithSize Nat -> CleanQueue [ctor] .

The operator

op clean : Float QueueWithSize Nat -> CleanQueue .

takes the current time, an event queue, and a natural number as arguments and returns a
term of sort CleanQueue. The last argument is initially 0 and indicates how many list items
have been dropped. The behavior of the operator is defined by the equations

eq clean(gt, [0, nilQueue], DROPPED) = {[0, nilQueue], DROPPED} .

ceq clean(gt, [s(SZ), publish(FROM, event(CA, d, s)) ; CQ], DROPPED) =

clean(gt, [SZ, CQ], s(DROPPED))

if gt >= d + s .

ceq clean(gt, [SZ, publish(FROM, event(CA, d, s)) ; CQ], DROPPED) =

{[SZ, publish(FROM, event(CA, d, s)) ; CQ], DROPPED}

if gt < d + s .

The operator

op generateInterested : RoutingTable Address AddressList Event

-> AddressList .

takes a broker’s routing table, the address an event has been received from, an address
list, and an event as arguments and returns an address list of neighboring actors that are
interested in the event. The operator is defined by the equations

eq generateInterested(nilRouting, FROM, AL, E) = AL .

eq generateInterested(((PF -> mtAddressList) ; RT), FROM, AL, E) =

generateInterested(RT, FROM, AL, E) .

158

7.3. Specification of the Stock Exchange Information System in Maude

eq generateInterested(((PF -> A ; AL) ; RT), FROM, AL’, event(CA, d, s)) =

if A =/= FROM and not(A in AL’) and evalFilter(CA, PF) then

generateInterested(((PF -> AL) ; RT), FROM, (A ; AL’), event(CA, d, s))

else

generateInterested(((PF -> AL) ; RT), FROM, AL’, event(CA, d, s)) fi .

The operator

op generateForward : Float Event Address AddressList AddressList -> Config .

and its defining equations

eq generateForward(gt, E, BROKER, mtAddressList, S) = null .

eq generateForward(gt, E, BROKER, (A ; AL), S) =

if A in S then

[gt + latency, (A <- publish(BROKER, E))]

else

[gt + latency(BROKER, A), (A <- publish(BROKER, E))] fi

generateForward(gt, E, BROKER, AL, S) .

generate messages that forward the event to interested actors. The scheduled arrival time
of these messages reflects the delay that is introduced by the latency of the communication
links from the broker to the receivers of the message.

Finally, the rule

crl [Broker-Process] :

< B : Broker |

eventQueue: [s(SZ1), publish(FROM, event(CA, d, s)) ; CQ],

routingTable: [SZ2, RT],

subscribers: S,

drops: D,

forwards: F,

sent: SENT, AS >

{gt, (B <- procTick)}

=>

< B : Broker |

eventQueue: [SZ1’, CQ’],

routingTable: [SZ2, RT],

subscribers: S,

drops: D + DROPPED,

forwards: s(F),

sent: SENT + AL .size, AS >

generateForward(gt, event(CA, d, s), B, AL, S)

if SZ1’ =/= 0 then

[gt + float(SZ2) * procRate, (B <- procTick)]

else

null fi

if AL := generateInterested(RT, FROM, mtAddressList, event(CA, d, s))

/\ {[SZ1’, CQ’], DROPPED} := clean(gt, [SZ1, CQ], 0) .

defines the behavior of a broker upon receiving a processing tick. The processed event is
forwarded to interested actors (the result of an evaluation of the event against the predicate
filters in the routing table) and the event queue is cleaned. Additionally, if the cleaned event
queue is not empty, the next processing tick is scheduled.

The module STOCKEXCHANGE-PARAMS

The module STOCKEXCHANGE-PARAMS defines the three constant operators

159

7. QoS Analysis of Cloud-based Publish/Subscribe Systems

op listings : -> Nat .

op stockValueMean : -> Float .

op stockValueStdDeviation : -> Float .

which define the parameters for the predicate filter and event content attribute generators
of the stock exchange information system.

The module STOCKEXCHANGE

The module STOCKEXCHANGE defines the behavior of the predicate filter and event
contents attributes generators.

The constant operator

op SEpfGen : -> [PredicateFilter] .

generates random predicate filters according to the distribution that is described in Section
7.2. The operator calls the auxiliary operator

op SEpfGenSwitch : [Float] -> [PredicateFilter] .

eq SEpfGen = SEpfGenSwitch(genRandom(0.0, 1.0)) .

with a random value between 0.0 and 1.0 that is provided as an argument. The semantics
of the auxiliary operator are defined by equations such as the following

var SWITCH : Float .

ceq SEpfGenSwitch(SWITCH) =

(pos(0) == topic(s(sampleUniWithInt(listings))))

if SWITCH < 0.20 .

which generates the predicate filter PF 1 or

ceq SEpfGenSwitch(SWITCH) =

(pos(0) == topic(s(sampleUniWithInt(listings)))) ;

(pos(2) >= floor(paretoValue)) ;

(pos(3) == 0.0)

if SWITCH >= 0.275

/\ SWITCH < 0.3 .

which generates the predicate filter PF 4. The rest of the defining equations are not shown
here for reasons of brevity but can be found in Appendix E.1.

The operator

op SEContentsAttributesGen : -> [ContentsAttributes] .

generates random event contents attributes for the model of the stock exchange information
system. Its behavior is specified by the equation

eq SEContentsAttributesGen =

[topic(s(sampleUniWithInt(listings))),

(floor(boxMullerValue(stockValueMean, stockValueStdDeviation)),

floor(paretoValue),

if sampleBerWithP(0.5) then

0.0

else

1.0 fi)] .

160

7.4. Statistical Analysis of the Stock Exchange Information System

7.4. Statistical Analysis of the Stock Exchange Information
System

We perform statistical model checking of QuaTEx formulas, which express relevant quanti-
tative properties, on the specification of the stock exchange information system model using
PVeStA. Specifically, we ask two questions about the system:

1. Events can be forwarded and can be dropped by the brokers. What percentage of
events is expected to be forwarded by the brokers? This indicates not only whether
events are forwarded to subscribers on time but also how much load the brokers are
facing.

2. What are the predicted operating costs for a provider of the stock exchange information
system?

The properties are statistically model checked under a varying number of subscribers in the
system. The expected processing time of an event increases proportionally to the subscribers
that are subscribed to brokers in the system. As predicate filters of subscribers can be equal,
in which case the processing time is not increased, the expected processing time is an upper
bound for the real processing time.

The following QuaTEx formulas define the quantitative properties we want to analyze.
The function time() denotes a state function that returns the global time value of the current
configuration.

Broker processing ratio. The broker processing ratio defines the ratio of events that are
forwarded by the brokers.

processingRatio(t) = if time() > t then

countForwarded()

countForwarded() + countDropped()

else © (processRatio(t))

with countForwarded() being the result of equationally counting the number of events
that are forwarded by the brokers (forwards attribute) and countDropped() being the
result of equationally counting the number of events that are dropped by the brokers
(drops attribute).

Number of outgoing packets. The formula packets(t) counts the number of packets that
are sent by the brokers.

packets(t) = if time() > t then countPackets()

else © (packets(t))

with countPackets() being the result of equationally counting the sent attribute of the
brokers.

We fix most of the parameters that are defined in the module PARAMS to the respective
(probabilistic) values as defined in Section 7.2. The number of listings is set to 100. The price

161

7. QoS Analysis of Cloud-based Publish/Subscribe Systems

values are distributed according to a normal distribution with mean 1000.0 and standard
deviation 100.0 (N (1000.0, 10000.0)). The number of brokers and the number of publishers
is set to 100. Publishers publish 1 event per second, brokers can process an event with a
processing time that is equal to the size of their routing table times 1 ms. The latencies for
the inter-broker communication are predefined in the network setup (network). The latencies
of links between publishers and brokers and between brokers and subscribers are random
values chosen according to a normal distribution with mean 30.0 ms and standard deviation
8.0 ms (N (30.0, 64.0)). Additionally, we define an initial delay for event publishing of 50
ms. The simulation duration of a run of the system is set to 5 minutes. The number of
subscribers and the lifetime of an event are varying parameters. The parameters are defined
in the module MODEL-PARAMS, which is presented in Appendix E.1.1.

We statistically model check the above properties for the various combinations of the
varying parameters. The event lifetime parameter is set to 1 s, 30 s, and 60 s. We model
checked the broker process ratio for 1, 10, 25, 50, 100, 200, 300, 400, 500, 600, 700, 800,
900, and 1000 subscribers. The number of outgoing packets were analyzed only up to 600
subscribers for time reasons. The results for the broker process ratio rely on a 99% confidence
interval bounded by 0.01 for the expected value of the formula processRatio(t). The results
for the number of outgoing packets rely on a 60% confidence interval bounded by 0.05 for
the expected value of the formula packets(t).

The statistical model checking results are shown in Figure 7.5. Figure 7.5(a) shows the
expected process ratio of the brokers for the varying amount of subscribers and the different
lifetime durations for the events. The results reveal that the stock exchange information
system is already overwhelmed by 25 subscribers. For 1000 subscribers, the expected process
ratio is below 20%. The numbers barely vary for the different event lifetime durations with
the process ratio not surprisingly being best for the 60 s lifetime duration. Figure 7.5(b)
shows the expected number of outgoing packets of the brokers. A peak is reached for
approximately 25 subscribers. After that point, as suggested by the results of 7.5(a), the
system can no longer keep up with the processing of events. Consequently, the number of
outgoing packets also decreases. Again, the numbers barely differ for the different event
lifetime durations. Figure 7.5(c) plots the expected number of outgoing packets on a daily
costs-based scale. We take the costs for regional data transfer of the Amazon EC2 platform
[11] as a reference. Amazon charges $0.120 per GB (up to 10TB/month3) for all data
transferred between instances in different regions.

7.5. Adding Cloud-based Broker Replication

As suggested by the statistical model checking results in Section 7.4, the process ratio drops
significantly for increased numbers of subscribers. A service provider who signed a service
level agreement that guarantees a timely delivery of events (e.g., 80% of events arrive on
time) will fail to keep the agreement in the aforementioned case. Cloud-based systems
offer the possibility of provisioning new resources on demand. In this section we leverage
this possibility for Cloud-based Publish/Subscribe systems. Therefore, where we previously
assumed geographically distributed brokers in the stock exchange information system model

3Indeed, if more than 10TB/month are bought, Amazon charges lower prices for additional the data.

162

7.5. Adding Cloud-based Broker Replication

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600 700 800 900 1000

E
xp

ec
te

d
A

ve
ra

ge
 P

ro
ce

ss
 R

at
io

 [%
]

Number of Subscribers

 1s event lifetime
 30s event lifetime
 60s event lifetime

(a) Expected broker process ratio

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 100 200 300 400 500 600

E
xp

ec
te

d
N

um
be

r
of

 O
ut

go
in

g
P

ac
ka

ge
s

Number of Subscribers

 1s event lifetime
 30s event lifetime
 60s event lifetime

(b) Expected number of outgoing packets sent by
the brokers

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600

E
xp

ec
te

d
D

ai
ly

 C
os

t f
or

 O
ut

go
in

g
T

ra
ffi

c
[$

]

Number of Subscribers

 1s event lifetime
 30s event lifetime
 60s event lifetime

(c) Expected operating costs for outgoing traffic of
the brokers

Figure 7.5.: Statistical model checking results of the stock exchange information system model

(see Section 7.2), we now assume geographically distributed data centers that can provision
extra resources on demand. However, two questions remain:

1. According to what metric should new brokers be provisioned?

2. How is the state of the broker handled?

In the following, we give answers to these questions by defining a broker replicator meta-
object and a data storage and access layer.

7.5.1. Broker Data — a data storage and access interface for
Cloud-based systems

The use of multiple replicated brokers raises the question of how brokers obtain the data
that they need to process events. In our example, this data is the routing table. Amazon

163

7. QoS Analysis of Cloud-based Publish/Subscribe Systems

Cloud

S1

P

BR12

B1.1
. . . B1.N1

BD1

BR13

B2.1
. . . B2.N2

BD2
S2

BR14

B3.1
. . . B3.N3

BD3
S3

PFS1
:= L = 1

∧ P ≤ 20.45

PFS2
:= L = 2

∧ P ≥ 30.15

PFS3
:= L = 2

∧ P ≥ 50.00

Figure 7.6.: Overview of broker replicators in a subset of the Cloud-based stock exchange infor-
mation system

and other Cloud computing providers propose using shared volumes [13] or a database [10]
in case multiple computing nodes need to share common data.

For the model of the Cloud-based stock exchange information system, we propose some-
thing similar: a broker data object that resembles a data storage and access interface. In
each location where brokers can be replicated (where we assumed brokers before, we now
assume data centers), one broker data object exists. This does not necessarily mean that
the servers that provide the data are not replicated. Instead, the broker data object ab-
stracts away how data is handled in the background. In our case, the object encapsulates
the routing table of the current location and offers primitives to add a new subscription to
the table and to request the current table. We assume, that the insertion algorithms for the
routing table are executed in the data layer (e.g., by using a SQL query to properly insert
a new subscription in a relational database).

7.5.2. Broker replication in the Cloud

To replicate brokers at the geographically distributed locations in our network, we replace
each of the brokers at these locations with a server replicator. The server replicator is a
meta-object that wraps broker instances according to the Russian Dolls model. Figure 7.6
illustrates how the broker replicator and the broker data objects are applied to a subset of the
stock exchange information system. The broker replicator object receives incoming events,
distributes them among wrapped brokers, and provisions new broker instances according to
a specific metric. We propose a metric that only relies on information that can be obtained

164

7.5. Adding Cloud-based Broker Replication

locally. This has several advantages:

• The acquisition of global, dynamically changing knowledge requires a traversal of the
system which introduces a coordination overhead.

• It should be easy and computationally inexpensive to evaluate a replication metric,
because we want the server replicator to introduce a close to zero delay when forward-
ing events. Additionally, for a complex metric, it could be necessary to scale up the
entry point itself.

In our model, the server replicator keeps track of the incoming event flow (events per second)
and has knowledge about how long it takes a broker to process an event, which depends on
the size of the routing table. The size information can be obtained locally from the broker
data object. The server replicator provisions a new broker if at time t

Ft > |B|t ·
1

|RT |t · 0.001
·
E

s

where Ft is the event flow rate at time t in events per second (Es), |B|t is the number of
brokers at time t, and |RT |t is the size of the routing table at time t. In our model, we do
not remove servers from the inner configuration of the broker replicator4. The replication
strategy defined above is executed every time an event is received by the broker replicator.

In the following, we define how subscriptions are handled, how events are forwarded, and
how they are processed by the broker instances that are wrapped by the broker replicator.

Subscription handling:

When a broker replicator receives a subscriptions, it forwards the subscription to the broker
data object, which in turn stores the subscription in its routing table and forwards it to
neighboring brokers. Just as in the original subscription mechanism in the model without
the server replicator, the broker data object prevents duplicates and collapses equal predicate
filters in the routing table. The delays that are introduced by forwarding the subscriptions
to the broker data object are omitted in our model.

Event processing:

When a broker replicator receives an event, it randomly (according to a uniform distribution)
picks one of the wrapped broker instances and forwards the event to this broker. The
forwarding happens instantaneously, i.e., without any delay. The broker instance enqueues
the received event. To process an event, a broker instance requests the current routing table
from the broker data object. Upon receiving the response with the routing table, the broker
instance locally processes the event and forwards it to subscribers and brokers whose filters
apply. The whole process is shown in Figure 7.7.

4This could be done by removing a broker instance, if the flow rate drops below a certain threshold that is
defined in terms of the current processing capability.

165

7. QoS Analysis of Cloud-based Publish/Subscribe Systems

Broker Replicator

Broker B1
. . . Broker BN

Broker Data

E

E
REQ

DATA

Figure 7.7.: Event processing of event E in a broker replicator that chooses broker B1 as the
processing broker

7.6. Specification of the Cloud-based Stock Exchange
Information System in Maude

In this section we describe the Maude-based specification of the Cloud-based stock exchange
information system that incorporates the broker replicator meta-object.

7.6.1. Overview of the Maude specification

The specification uses the specification of Section 7.3 as a foundation and replaces the
modules BROKER with modules that describe

• the broker replicator meta-object,

• an actor that resembles a data storage and access layer in a Cloud-based architecture,

• and a broker that can be wrapped by the broker replicator meta-object and that uses
the data access layer.

Additionally, the modules BR-CONFIGURATION and the modules BR-ANALYSIS, BR-
PUBLISH-SUBSCRIBE and BR-PUBLISH-SUBSCRIBE-ANALYSIS replace their coun-
terparts of the specification that does not use the broker replicator. An overview of the
Cloud-based specification is shown in Figure 7.8.

7.6.2. Description of the modules of the Maude specification

The module BR-CONFIGURATION

The module BR-CONFIGURATION defines the actor types, attributes, and message con-
tents that are added by the Cloud-based specification of the stock exchange information
system. The operators

op BrokerReplicator : -> ActorType [ctor] .

op BrokerData : -> ActorType [ctor] .

define the actor types for the broker replicator and the actor that stores the common broker
data of wrapped brokers in the Cloud-based model.

The broker replicator has the new attributes

166

7.6. Specification of the Cloud-based Stock Exchange Information System in Maude

BR-PUBLISH-
SUBSCRIBE-
ANALYSIS

BR-
PUBLISH-
SUBSCRIBE

BR-ANALYSIS

BR-BROKER-
DATA

BR-BROKER-
REPLICATOR

BR-
BROKER

PUBLISHER SUBSCRIBER
BR-
CONFIGURATION

GENERATOR
MODEL-
PARAMS

CONFIGURATION

NETWORK

PARAMS ROUTING
STOCK-
EXCHANGE

EVENT
STOCK-
EXCHANGE-
PARAMS

Figure 7.8.: Overview of the Maude specification of the Cloud-based stock exchange information
system model

167

7. QoS Analysis of Cloud-based Publish/Subscribe Systems

op brokerList:_ : AddressList -> Attribute [gather(&)] .

op eventCnt:_ : Nat -> Attribute [gather(&)] .

op eventFlowRate:_ : Float -> Attribute [gather(&)] .

which respectively hold a list of addresses of wrapped brokers, a counter of events, and an
indicator of the current event flow rate.

Additionally, the new messages

op check : -> Content .

op spawnBroker : -> Content .

op startBroker : -> Content .

op dataReq : Address -> Content .

op brProcTick : TableWithSize AddressList -> Content .

are defined and are used by the broker replicator to handle the provisioning of new brokers
and by the brokers to interact with the actor that stores the common broker data.

The module BR-BROKER-DATA

The module BR-BROKER-DATA defines the behavior of an actor that stores the common
data of a group of wrapped brokers and can be queried like a data access layer. In the
Maude-based specification, we use this actor to model a shared memory-like infrastructure
which all brokers that are wrapped by the same server replicator can communicate with
via message passing. The actor furthermore handles incoming subscriptions of the group of
replicated brokers that it serves. In the following, the variables

vars B BR A : Address .

var SZ : Nat .

var RT : RoutingTable .

var AS : AttributeSet .

var gt : Float .

var PF : PredicateFilter .

vars N S : AddressList .

are used.
The rule

rl [State-Subscription] :

< BR . 0 : BrokerData |

routingTable: [SZ, RT],

neighbors: N,

subscribers: S, AS >

{gt, BR . 0 <- subscribe(A, PF)}

=>

< BR . 0 : BrokerData |

routingTable: insertSubscription((PF -> A), [SZ, RT]),

neighbors: N,

subscribers: A ; S, AS >

generatePropagate(gt, N, A, BR, PF) .

defines the behavior of the broker data actor when it receives a subscription. The actor
inserts the subscription in its routing table and propagates it to its neighboring brokers. For
this, it uses the operators insertSubscription and generatePropagate. The definitions of these
operators were given in Section 7.3.2.

Similar to the rule that handles subscriptions, the rule

168

7.6. Specification of the Cloud-based Stock Exchange Information System in Maude

rl [State-Propagate] :

< BR . 0 : BrokerData |

routingTable: [SZ, RT],

neighbors: N, AS >

{gt, BR . 0 <- propagate(A, PF)}

=>

< BR . 0 : BrokerData |

routingTable: insertSubscription((PF -> A), [SZ, RT]),

neighbors: N, AS >

generatePropagate(gt, N, A, BR, PF) .

specifies the behavior of the actor when it receives a message that propagates a subscription.
Finally, the rule

rl [Data-Request] :

< BR . 0 : BrokerData |

routingTable: [SZ, RT],

subscribers: S, AS >

{gt, BR . 0 <- dataReq(B)}

=>

< BR . 0 : BrokerData |

routingTable: [SZ, RT],

subscribers: S, AS >

[gt + float(SZ) * procRate, B <- brProcTick([SZ, RT], S)] .

specifies that if a broker data actor receives a data request message from a broker, it answers
the request with a process tick message that contains the current routing table and the list
of subscribers.

The module BR-BROKER-REPLICATOR

The module BR-BROKER-REPLICATOR defines the behavior of the broker replicator
meta-object. The broker replicator wraps around a group of (replicated) brokers and keeps
track of the incoming event flow rate. It uses this metric to provision new brokers on demand.
In the following description of the broker replicator behavior, the variables

var BL : AddressList .

vars gt FR FR’ : Float .

var C : Config .

vars NAT EC SZ SZ’ : Nat .

vars AS AS’ : AttributeSet .

var CO : Content .

var E : Event .

var NG : NameGenerator .

vars A B NB BR BS : Address .

var PF : PredicateFilter .

var RT : RoutingTable .

var TWZ : TableWithSize .

are used.
The replication strategy of the broker replicator is defined by the operator

op strategy : Float Nat Nat -> Bool .

which takes the current event flow rate, the current number of brokers, and the size of the
routing table as arguments. It returns a Boolean value indicating whether or not a new
broker should be provisioned. The strategy is defined by the equation

169

7. QoS Analysis of Cloud-based Publish/Subscribe Systems

eq strategy(FR, SZ, SZ’) = FR > (float(SZ) / (float(SZ’) * procRate)) .

It states that the strategy operator returns true iff the incoming flow of events per second
is greater than the current processing rate of the wrapped brokers.

The operator

op pickRandom : AddressList -> [Address] .

eq pickRandom(BL) = BL[sampleUniWithInt(BL .size)] .

randomly picks (according to a uniform distribution) one of the broker addresses from the
broker address list.

The rule

rl [Broker-Start] :

< BR : BrokerReplicator | AS >

{gt, BR <- startBroker}

=>

< BR : BrokerReplicator | AS >

[gt, BR <- spawnBroker] .

describes the broker replicator instantiation upon receiving a start message. The broker
replicator thereby sends a self-addressed message to spawn a broker (the initial broker).

Upon receiving an event, the rule

crl [Broker-Replicator-Receive-Event] :

< BR : BrokerReplicator |

config: < BR . 0 : BrokerData |

routingTable: [SZ, RT], AS’ > C,

brokerList: BL,

eventCnt: EC,

eventFlowRate: FR, AS >

{gt, BR <- publish(A, E)}

=>

< BR : BrokerReplicator |

config: < BR . 0 : BrokerData |

routingTable: [SZ, RT], AS’ > C,

brokerList: BL,

eventCnt: s(EC),

eventFlowRate: FR’, AS >

[gt, pickRandom(BL) <- publish(A, E)]

if strategy(FR’, BL .size, SZ) then

[gt, BR <- spawnBroker]

else

null

fi

if FR’ := (float(s(EC)) / (gt + 1.0)) .

states that the broker replicator picks a random broker from its broker list to forward the
event to. Additionally, the broker replicator checks its replication strategy and, in case of
an evaluation to true, spawns a new broker by sending a self-addressed message with the
message contents spawnBroker.

The rules

rl [Broker-Replicator-Receive-Subscription] :

< BR : BrokerReplicator | AS >

{gt, BR <- subscribe(A, PF)}

=>

170

7.6. Specification of the Cloud-based Stock Exchange Information System in Maude

< BR : BrokerReplicator | AS >

[gt, BR . 0 <- subscribe(A, PF)] .

and

rl [Broker-Replicator-Receive-Propagate] :

< BR : BrokerReplicator | AS >

{gt, BR <- propagate(A, PF)}

=>

< BR : BrokerReplicator | AS >

[gt, BR . 0 <- propagate(A, PF)] .

forward subscriptions and forwarded subscriptions from other brokers (message content
publish) to the broker data actor.

Finally, the rule

crl [Broker-Replicator-Spawn-Broker] :

< BR : BrokerReplicator |

config: NG C,

brokerList: BL, AS >

{gt, BR <- spawnBroker}

=>

< BR : BrokerReplicator |

config: (NG .next) C

< NB : Broker |

eventQueue: [0, nilQueue],

drops: 0, forwards: 0, sent: 0 >,

brokerList: (NB ; BL), AS >

if NB := NG .new .

specifies how, when a message with message contents spawnBroker is received, a new broker
is spawned in the inner configuration of the broker replicator.

The module BR-BROKER

The module BR-BROKER specifies the behavior of a broker that is wrapped by the broker
replicator. In the following, the variables

vars gt d s : Float .

vars F D SZ SZ1 SZ1’ SZ2 NO DROPPED SENT : Nat .

vars PF : PredicateFilter .

var AS : AttributeSet .

var R : Routing .

var RT : RoutingTable .

var E : Event .

var CA : ContentsAttributes .

var CQ CQ’ : ContentsQueue .

vars A B FROM BROKER : Address .

vars AL AL’ N S : AddressList .

vars TWZ TWZ’ : TableWithSize .

are used.
Just as a normal broker, a wrapped broker drops an event upon receiving it, if it has

expired.

crl [Broker-Receive-Drop] :

< B : Broker |

171

7. QoS Analysis of Cloud-based Publish/Subscribe Systems

drops: D, AS >

{gt, (B <- publish(FROM, event(CA, d, s)))}

=>

< B : Broker |

drops: s(D), AS >

if gt >= d .

Upon receiving an event that has not expired, the rule

crl [Broker-Receive-Process] :

< B . NO : Broker |

eventQueue: [SZ1, CQ], AS >

{gt, (B . NO <- publish(FROM, event(CA, d, s)))}

=>

< B . NO : Broker |

eventQueue: [s(SZ1), CQ ; publish(FROM, event(CA, d, s))], AS >

if SZ1 == 0 then

[gt, B . 0 <- dataReq(B . NO)]

else

null fi

if gt < d .

states that a wrapped broker enqueues the event in its event queue and, if the queue was
initially empty, starts processing the event by sending a data request to the broker data
actor in order to receive the data (routing table, subscribers) that is necessary to process
the event.

Finally, a wrapped broker processes an event when it receives the data from the broker
data actor (message content brProcTick). The rule that defines this behavior

crl [Broker-Process] :

< B . NO : Broker |

eventQueue: [s(SZ1), publish(FROM, event(CA, d, s)) ; CQ],

drops: D,

forwards: F,

sent: SENT, AS >

{gt, (B . NO <- brProcTick([SZ2, RT], S))}

=>

< B . NO : Broker |

eventQueue: [SZ1’, CQ’],

drops: D + DROPPED,

forwards: s(F),

sent: SENT + AL .size, AS >

generateForward(gt, event(CA, d, s), B, AL, S)

if SZ1’ =/= 0 then

[gt, B . 0 <- dataReq(B . NO)]

else

null fi

if AL := generateInterested(RT, FROM, mtAddressList, event(CA, d, s))

/\ {[SZ1’, CQ’], DROPPED} := clean(gt, [SZ1, CQ], 0) .

uses the operators clean, generateInterested, and generateForward. The definitions of these
operators were given in Section 7.3.2.

172

7.7. Statistical Analysis of the Cloud-based Stock Exchange Information System

7.7. Statistical Analysis of the Cloud-based Stock Exchange
Information System

Just as for the original specification (see Section 7.4), we perform statistical model checking
of QuaTEx formulas, which express quantitative properties of interest, on the specification
of the Cloud-based stock exchange information system model using PVeStA. Again, the
properties are statistically model checked under a varying number of subscribers in the
system and for three different event lifetime values (1 s, 30 s, 60 s).

Broker processing ratio (using the broker replicator). The broker processing ratio defines
the ratio of events that are forwarded by the wrapped brokers.

processRatio(t) = if time() > t then

countForwarded()

countForwarded() + countDropped()

else © (processRatio(t))

with countForwarded() being the result of equationally counting the number of events
that are forwarded by the brokers (forwards attribute) and countDropped() being
the result of equationally counting the number of events that are dropped by the
brokers (drops attribute). It is of note that the countForwarded() and countDropped()
functions are evaluated over all replicated brokers.

Number of brokers. The formula brokers(t) counts the number of brokers that are provi-
sioned by the broker replicators.

brokers(t) = if time() > t then countBrokers()

else © (brokers(t))

with countBrokers() being the result of equationally counting the size of the broker
list (brokerList attribute) of each broker replicator.

The parameters are set to the same values as in Section 7.4. For the analysis we assume
that the broker replicators are not bounded in the number of brokers that they can provision.
We statistically model checked the aforementioned properties for the event lifetime durations
of 1 s, 30 s, and 60 s and 1, 10, 25, 50, 100, 200, 300, 400, and 500 subscribers. The results for
the broker process ratio rely on a 95% confidence interval bounded by 0.05 for the expected
value of the formula processRatio(t). The results for the number of brokers rely on a 80%
confidence interval bounded by 0.05 for the expected value of the formula countBrokers().

The statistical model checking results are shown in Figure 7.9. Figure 7.9(a) shows the
expected process ratio of the brokers with and without broker replication for the varying
amount of subscribers and the different lifetime durations for the events. With the broker
replicator and the local replication strategy, a significant increase in the process ratio can be
achieved. The other observation is that for a longer lifetime duration of events, the replica-
tion strategy performs better. As no global knowledge is used and brokers are just replicated
so that they can keep up the local processing of events, the process ratio does not reach

173

7. QoS Analysis of Cloud-based Publish/Subscribe Systems

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500

E
xp

ec
te

d
A

ve
ra

ge
 P

ro
ce

ss
 R

at
io

 [%
]

Number of Subscribers

1s event lifetime
30s event lifetime
60s event lifetime

Replication, 1s event lifetime
Replication, 30s event lifetime
Replication, 60s event lifetime

(a) Expected broker process ratio (Cloud-based)

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500

E
xp

ec
te

d
N

um
be

r
of

 B
ro

ke
rs

Number of Subscribers

Replication, 1s event lifetime
Replication, 60s event lifetime

(b) Expected number of brokers

 0

 200

 400

 600

 800

 1000

 1200

 0 100 200 300 400 500

E
xp

ec
te

d
D

ai
ly

 C
os

t f
or

 B
ro

ke
r

In
st

an
ce

s
[$

]

Number of Subscribers

Replication, 1s event lifetime
Replication, 60s event lifetime

(c) Expected operating costs for brokers

Figure 7.9.: Statistical model checking results of the Cloud-based stock exchange information sys-
tem model

100%. To achieve higher process ratios, global knowledge could be used to overprovision at
broker replicators that have more crucial time bounds. Figure 7.9(b) shows the expected
number of brokers for the broker replication. In the case of a 1 s event lifetime duration,
events expire earlier in the forwarding process and less brokers are provisioned than in the
case of a 60 s event lifetime duration. For a 60 s event lifetime duration, the number of
brokers increases proportionally to the number of subscribers using the local replication
strategy.

Figure 7.9(c) plots the expected number of brokers on a daily costs-based scale. We
take the costs for an on-demand instance of the Amazon EC2 platform [11] as a reference.
Amazon charges $0.085 per hour for a small standard on-demand instance.

174

7.8. Conclusion & Future Work

7.8. Conclusion & Future Work

In this chapter we have shown that a system that is based on a Publish/Subscribe middleware
can be naturally modeled using the modularized actor model. Furthermore, the statistical
model checking analysis of the model suggested that with event lifetime durations of 1
s, 30 s, and 60 s, it is hard to guarantee a timely delivery of events in a system that is
distributed across the globe. One possibility to improve to reliability of such a system is to
reduce the processing delays of intermediaries in the message forwarding mechanism. We
proposed a broker replicator meta-object that uses the Cloud’s ability to provision resources
on demand together with a local replication strategy to spawn additional broker instances
and thus reduce the processing time of an event. Statistical analysis of the Cloud-based
model has shown that the reliability of the system could be increased using the replication
mechanism.

The following proposals to further improve the reliability of a Cloud-based Publish/Sub-
scribe system are seen as future work:

• Introduce bandwidth limitations in the model and see if and how links can be replicated
using a similar strategy as for the brokers.

• See how the second factor for delivery delays, the inter-broker latency, could be reduced
by flexible routing mechanisms.

• Introduce a global management meta-object, which wraps a Publish/Subscribe system
and provides global knowledge about where to provision new resources to fulfil the
timeliness guarantees.

175

8 C
h

ap
te

r

Outlook and Conclusion

In this thesis, we focused on three Cloud Computing management-related obstacles: bugs in
large distributed systems, service availability, and performance unpredictability. To tackle
these challenges and the general complexity of Cloud Computing and distributed systems,
we proposed solutions based on executable formal specifications and formal analysis, using
rewriting logic as the semantic framework and Maude, a language and system based on
rewriting logic that offers the possibility of executing and formally analyzing specifications,
as the foundation for our work.

In Chapter 4, we presented specifications of formal languages for the design and analysis
of Cloud-based architectures. In particular we provided the Maude-based specification of
a formal language based on the KLAIM language specification (M-KLAIM). We further
extended this specification with object-orientation (OO-KLAIM) and have shown how sock-
ets can be used to execute such specifications in a distributed environment (D-KLAIM).
Finally, we demonstrated how specifications based on *-KLAIM can be formally analyzed
using model checking of qualitative properties. The various examples in this chapter sug-
gested that the design and analysis of distributed systems such as Cloud Computing systems
are possible using the *-KLAIM language specifications as a foundation. Furthermore, we
outlined that the languages provided in this chapter might prove themselves helpful for the
rapid prototyping of such systems in future work.

In Chapter 5, we extended the standard actor model of computation to incorporate the
Russian Dolls model and fulfill the requirements for statistical model checking. To fulfill
these requirements, we introduced a multi-level scheduling approach that assures the absence
of un-quantified non-determinism for the extended actor model. We further demonstrated
that this new extended actor model — the modularized actor model — allows the specifica-
tion of hierarchically structured distributed systems and their quantitative and qualitative
formal analysis.

177

8. Outlook and Conclusion

Chapter 6 dealt with the obstacle of service availability. We outlined that we can for-
mally describe reflective Cloud-based architectures that are protected against denial of ser-
vice (DoS) attacks using meta-objects formally specified in rewriting logic. Namely, we
specified the ASV Wrapper and the Server Replicator SR meta-objects. We discussed that
ASV cannot provide stable availability, which means that with very high probability service
quality remains very close to a threshold, regardless of how bad the DoS attack can get;
and that SR cannot provide stable availability at a reasonable cost. Hence, we introduced
ASV+SR, the combination of the ASV and SR meta-objects, for which we have shown, by
statistical model checking, that the meta-object composition can achieve stable availability
at a reasonable cost under DoS attacks.

Finally, in Chapter 7, we demonstrated that a system that is based on a Publish/Subscribe
middleware can be naturally modeled using the modularized actor model. Furthermore,
we answered the question of how a Publish/Subscribe architecture can be enriched with
Cloud-based dynamic resource provisioning mechanisms to better meet quality of service
(QoS) requirements; and demonstrated how predictions about QoS properties of the specified
systems can be made using statistical analysis.

It has been out of scope for this thesis to find solutions for all the challenges of Cloud
Computing management. For future work we propose the formal specification and analysis
of more Cloud-based systems and scenarios. The results in this thesis suggest that this
methodology can help deal with the complexity of designing, building, testing, and verifying
Cloud-based systems. Furthermore, it is an ambitious goal to develop a formal approach and
framework for the design of correct-, secure-, and safe-by-construction distributed systems,
aided by a rich tool environment.

178

Appendix

179

Appendix A
Formal Languages for the Design and

Analysis of Cloud-based Architectures

181

A. Formal Languages for the Design and Analysis of Cloud-based Architectures

(1)

P
s(t)@l
−−−−→

ρ′
P ′ s = ρ′ • ρ(l) et = T [[t]]ρ′•ρ

s ::ρ P s ::ρ P ′ | out(et)

(2)

P1
s(t)@l
−−−−→

ρ
P ′
1 s2 = ρ • ρ1(l) et = T [[t]]ρ•ρ1

s1 ::ρ1 P1 ‖ s2 ::ρ2 P2 s1 ::ρ1 P ′
1 ‖ s2 ::ρ2 P2 | out(et)

(3)

P
e(Q)@l
−−−−→

ρ′
P ′ s = ρ′ • ρ(l)

s ::ρ P s ::ρ Q | P ′

(4)

P1
e(Q)@l
−−−−→

ρ
P ′
1 s2 = ρ • ρ1(l)

s1 ::ρ1 P1 ‖ s2 ::ρ2 P2 s1 ::ρ1 P ′
1 ‖ s2 ::ρ2 Q | P2

(5)

P1
i(t)@l
−−−→

ρ′
P ′
1 s = ρ′ • ρ(l) P2

o(et)@self
−−−−−−→

φ
P ′
2 match(T [[t]]ρ′•ρ, et)

s ::ρ P1 | P2 s ::ρ P ′
1[et/T [[t]]ρ•ρ1] | P

′
2

(6)

P1
i(t)@l
−−−→

ρ
P ′
1 s2 = ρ • ρ1(l) P2

o(et)@self
−−−−−−→

φ
P ′
2 match(T [[t]]ρ•ρ1 , et)

s1 ::ρ1 P1 ‖ s2 ::ρ2 P2 s1 ::ρ1 P ′
1[et/T [[t]]ρ•ρ1] ‖ s2 ::ρ2 P ′

2

(7)

P1
r(t)@l
−−−−→

ρ′
P ′
1 s = ρ′ • ρ(l) P2

o(et)@self
−−−−−−→

φ
P ′
2 match(T [[t]]ρ′•ρ, et)

s ::ρ P1 | P2 s ::ρ P ′
1[et/T [[t]]ρ•ρ1] | P2

(8)

P1
r(t)@l
−−−−→

ρ
P ′
1 s2 = ρ • ρ1(l) P2

o(et)@self
−−−−−−→

φ
P ′
2 match(T [[t]]ρ•ρ1 , et)

s1 ::ρ1 P1 ‖ s2 ::ρ2 P2 s1 ::ρ1 P ′
1[et/T [[t]]ρ•ρ1] ‖ s2 ::ρ2 P2

(9)
s ::ρ P1 s ::ρ P ′

1

s ::ρ P1 | P2 s ::ρ P ′
1 | P2

(10)

P
n(u))@self
−−−−−−−→

ρ′
P ′ s′ 6= s

s ::ρ P s ::ρ P ′[s′/u] ‖ s′ ::[s′/self]•ρ nil

(11)
N1 N ′

1 st(N ′
1) ∩ st(N2) = ∅

N1 ‖ N2 N ′
1 ‖ N2

(12)
N ≡ N1 N1 N ′

2 N2 ≡ N ′

N N ′

Figure A.1.: KLAIM’s reduction relation

182

initial =

site ’Consumer1 {0}::{AE1} (’Request < S >) ||

site ’Consumer2 {0}::{AE2} (’Request < S >) ||

site ’TokenServer {0}::{AE3} out([0])

site ’Consumer1 {0}::{AE1}

in(! x ’Token)@ site ’TokenServer

. out(x ’Token0)@ self . ’Enter < S > ||

site ’Consumer2 {0}::{AE2} (’Request < S >) ||

site ’TokenServer {0}::{AE3} out([0])

site ’Consumer1 {0}::{AE1}

out([0])@ self . ’Enter < S > ||

site ’Consumer2 {0}::{AE2} (’Request < S >) ||

site ’TokenServer {0}::{AE3} nil

site ’Consumer1 {0}::{AE1}

out([0]) | ’Enter < S > ||

site ’Consumer2 {0}::{AE2} (’Request < S >) ||

site ’TokenServer {0}::{AE3} nil

site ’Consumer1 {0}::{AE1}

out([0]) | in(! x ’Token)@ self .

out([1])@ self . ’Exit < S > ||

site ’Consumer2 {0}::{AE2} (’Request < S >) ||

site ’TokenServer {0}::{AE3} nil

site ’Consumer1 {0}::{AE1}

out([1])@ self . ’Exit < S > ||

site ’Consumer2 {0}::{AE2} (’Request < S >) ||

site ’TokenServer {0}::{AE3} nil

site ’Consumer1 {0}::{AE1}

out([1]) | ’Exit < S > ||

site ’Consumer2 {0}::{AE2} (’Request < S >) ||

site ’TokenServer {0}::{AE3} nil

site ’Consumer1 {0}::{AE1}

out([1]) | in(! x ’Token)@ self .

out([0])@ site ’TokenServer . ’Request < S > ||

site ’Consumer2 {0}::{AE2} (’Request < S >) ||

site ’TokenServer {0}::{AE3} nil

site ’Consumer1 {0}::{AE1}

out([0])@ site ’TokenServer . ’Request < S > ||

site ’Consumer2 {0}::{AE2} (’Request < S >) ||

site ’TokenServer {0}::{AE3} nil

’out-remote

’process-invocation

’in-remote

’out-self

’process-invocation

’in-self

’out-self

’process-invocation

’in-self

Figure A.2.: Counterexample for the liveness of consumer2
(AE1 := [site ’Consumer1 / self] * [site ’TokenServer / ’TokenServer]),
AE2 := [site ’Consumer2 / self] * [site ’TokenServer / ’TokenServer],
AE3 := [site ’TokenServer / self],
S := nilProcessSeq,nilLocalitySeq,nilExpressionSeq)

183

Appendix B
Automatic Generation of CINNI
Instances for the Maude System

Many formal languages use the concept of names to range over essential entities of the
language and are usually equipped with special binding constructs for names. For example,
the λ-calculus uses variables as names and λ-abstractions as a name binders; Milner’s π-
calculus uses the action prefixes in and new to bind variables in a subsequent term; and
first-order logic uses variables as names, which can be bound by the ∀ and ∃ quantifiers.

CINNI is a calculus of explicit substitutions that contributes a first-order representation
of terms which takes variable bindings into account and captures free substitutions. The
CINNI calculus is parametric in the syntax of the object language, which allows it to be
applied to many different object languages.

The createCINNI tool makes the parametric nature of CINNI available to the Maude
system by means of an automatic module transformation which — given a Maude module
specifying the syntax of an object language L — generates a Maude module containing the
instantiation CINNIL.

B.1. Introduction

Many formal languages use the concept of names to range over essential entities of the
language and are usually equipped with special binding constructs for names. For example,
the λ-calculus uses variables as names and λ-abstractions as name binders; Milner’s π-
calculus [84] uses the action prefixes in and new to bind variables in a subsequent term; and
first-order logic uses variables as names, which can be bound by the ∀ and ∃ quantifiers.

Stehr [99] proposes CINNI, a calculus of explicit substitutions that contributes a first-
order representation of terms which takes variable bindings into account and captures free
substitutions. The CINNI calculus is parametric in the syntax of an object language, which
allows it to be applied to many different object languages. Stehr shows applications of
CINNI to the λ-, ς-, and π-calculi in Maude. In other work [7, 104], the CINNI calculus is
applied to manage names and bindings in various host languages.

185

B. Automatic Generation of CINNI Instances for the Maude System

In this work, we make the parametric nature of CINNI available to Maude users by
means of an automatic module transformation which — given a Maude module specifying
the syntax of an object language L — generates a Maude module containing the instantiation
CINNIL.

We first provide an overview of the CINNI calculus. Then, as a running example, we apply
the CINNI calculus to Millner’s π-calculus, and give, based on that example, an idea how
the transformation can be generated automatically using reflection. Finally, we describe how
the transformation works in more detail and present the Maude tool createCINNI, which
performs the module transformation in Full Maude.

B.2. CINNI

Stehr [99] proposes CINNI, a calculus of explicit substitutions that contributes a first-order
representation of terms which takes variable bindings into account and captures free substi-
tutions. For a given language L and its defining syntax, the instantiation of CINNI for L is
denoted by CINNIL. Stehr tries to stay as close as possible to the standard name notation
while at the same time including the canonical representation of the de Bruijn notation [37]
as a special case, in which a single name is used. CINNI uses the Berklin notation [23, 24]
that unifies indexed and named notations. In the Berklin notation, each variable name X is
annotated with an index i ∈ N which represents the position of the binder in the term that
binds Xi. The index i of Xi thereby indicates that the binder that binds the variable X is
the ith binder to the left of the variable in the term.

Example B.1: Berklin notation
The following example illustrates the Berklin notation. Variable X0 is bound by the second
binder while variable X1 is bound by the first binder in the term.

∀X. ∀X. f(X0) ∧ f(X1)

CINNI extends a given language L with explicit substitutions as shown in equations B.1,
B.2 and B.3. The simple substitution [X := M] replaces variable X0 with value M and
reduces the index of any other equally named variable Xn+1 to Xn. The shift substitution
↑X for variable X increases the index of variables with the same name X. The lifted
substitution ⇑X (S) is defined in equations B.4, B.5, and B.6. It decreases the index of
variables with the name X, performs the substitution S, and finally lifts the variable.

[X := M] (simple substitution) (B.1)

↑X (shift substitution) (B.2)

⇑X (S) (lifted subsitution) (B.3)

⇑X (S)X0 = X0 (B.4)

⇑X (S)Xn+1 = ↑X ((S)Xn) (B.5)

⇑X (S)Yn = ↑X ((S)Yn) if X 6= Y (B.6)

186

B.3. Running Example: CINNIπ

For each syntactical constructor f of the language L, CINNI adds a syntax-specific equation
which automatically shifts the bound variables in each argument of the constructor. Let
ji,1, . . . ji,mi

be the arguments that are bound by f in argument i, then the syntax-specific
equation is defined by:

S f(P1, . . . , Pn) = f(⇑Pj1,1
(. . . ⇑Pj1,m1

(S))P1, . . . ,⇑Pjn,1
(. . . ⇑Pjn,mn

(S))Pn)

B.3. Running Example: CINNIπ

In the following, we will describe the application of CINNI to Millner’s π-calculus. We will
later use this running example to illustrate out module transformation. Process terms are
represented by the sort Trm and channels by the sort Chan. Process terms can be concatenated
by the associative and commutative parallel composition operator P|Q for which the null
process nil acts as identity. For a process term P, the term out CX <CY>. P represents a
process that sends the channel CY over the channel CX and then continues with P. The term
in CX [Y]. P represents a process term that receives a channel name over the channel CX and
then continues with P. Finally, the term new [Y] P represents a process term that creates a
new local name that can be used in P and then continues with P. The functional Maude
module

fmod PI-SYNTAX is

protecting QID .

sorts Chan Trm .

op _{_} : Qid Nat -> Chan .

op nil : -> Trm [ctor] .

op _|_ : Trm Trm -> Trm [ctor assoc comm id: nil] .

op new[_]_ : Qid Trm -> Trm [ctor] .

op out_<_>._ : Chan Chan Trm -> Trm [ctor] .

op in_[_]._ : Chan Qid Trm -> Trm [ctor] .

endfm

describes the syntax of the π calculus.
The two terms in CX [Y] P and new [Y] P bind the channel name Y in the subsequent process

P. The variables

vars X Y : Qid .

vars CX CZ : Chan .

vars P Q : Trm .

var S : Subst .

vars n : Nat .

are used in the following equations.
The application of CINNI to the syntax of the π-calculus adds a sort that represents

substitutions (sort Subst), new operators and equations for the three kinds of substitution:
simple, shift and lifted.

op [_:=_] : Qid Chan -> Subst .

op [shift_] : Qid -> Subst .

op [lift__] : Qid Subst -> Subst .

op __ : Subst Chan -> Chan .

op __ : Subst Trm -> Trm .

187

B. Automatic Generation of CINNI Instances for the Maude System

eq [X := CZ] X{0} = CZ .

eq [X := CZ] X{suc(n)} = X{n} .

ceq [X := CZ] Y{n} = Y{n} if X =/= Y .

eq [shift X] X{n} = X{suc(n)} .

ceq [shift X] Y{n} = Y{n} if X =/= Y .

eq [lift X S] X{0} = X{0} .

eq [lift X S] X{s(n)} = [shift X] (S (X{n})) .

ceq [lift X S] Y{n} = [shift X] (S (Y{n}))

if X =/= Y .

Additionally, syntax-specific equations are added to the module. A substitution that is
applied to the nil process is discarded. If a substitution is applied to the parallel composition
of two process terms, it is applied to each process term individually. As nil acts as the
identity for the associative and commutative parallel composition operator, it is important
not to apply the substitution to a composition where one of the subterms is the process term
nil. Similarly to the parallel composition, if a substitution is applied to the process term
out CX<CZ>.M, the substitution is simply applied to all subterms. The two process terms in CX

[Y].M and new[Y]M bind the name Y in the subsequent process term M, so the lifted substitution
[lift Y S] has to be applied to M.

eq S nil=nil.

ceq S (P | Q) = (S P) | (S Q)

if P =/= nil and Q =/= nil .

eq S (out CX<CZ>.P) = out (S CX)<S CZ>.(S P).

eq S (in CX[Y].P) = in(S CX)[Y].([lift Y S] P).

eq S (new[Y]P) = new[Y]([lift Y S]P).

Discussion

Using Berklin’s representation, a requirement for an automatic generation of CINNI spec-
ifications is that the language differentiates between names, indexed names, and values.
Names are used in binding expressions, indexed names are names quantified by an index
that are bound to a name by binding operators, and values are terms of the language that
can be substituted for indexed names. In our example of Millner’s π calculus, these entities
were mapped to entities of the target language as follows:

name 7→ sort Qid

indexed name 7→ sort Chan

value 7→ sort Chan

If this mapping is given, the CINNI transformation can be fully automated. The trans-
formation consists of two main steps:

1. A sort that represents substitutions and operators for the simple, shift, and lifted
substitutions are added. Additionally, for each constructed sort of the language, e.g.,
Chan and Trm, an operator to prefix substitutions is added. Then, equations defining
the semantics of the simple, shift, and lifted substitution are added. These equations
need to be aware of the actual sorts for names, indexed names, and values.

188

B.4. The Transformation

L

ML ML′ ML′′

ML′′′MCINNIL
upModule

renameModule addSorts

addOps

addEqs

META-LEVEL

Figure B.1.: Top level view on the module transformation

2. A syntax-specific equation is added for each syntactic constructor of the language.
Basically, there are two types of syntactic constructors: those that bind names in one
or more of the arguments and those that don’t. For example, the syntactic constructor
new[_]_ binds the first argument in the second whereas the parallel operator _|_ does
not bind any names. The syntax-specific equations describe the effect of applying a
substitution a term built with the constructor by passing down the substitution to
each of the arguments. If the constructor binds a name in an argument, the name is
lifted in the substitution of that argument.

The information about which names are bound in which argument cannot be derived
directly from the first-order declaration of a syntactic constructor. Our transformation uses
Maude’s metadata attribute so that the user can add this binding information. The two
constructors new[_]_ and in_[_] bind the first in the second argument. Thus they are be
annotated accordingly.

op new[_]_ : Qid Trm -> Trm [ctor metadata "1->2"] .

op in_[_]._ : Chan Qid Trm -> Trm [ctor metadata "2->3"] .

Having the mapping between names, indexed names, and values and the corresponding
sorts in the language together with the information about which name is bound in which
argument by the syntactic constructors enables us to create a fully automated module trans-
formation. The next section describes the transformation in more detail.

B.4. The Transformation

Figure B.1 shows a top level view of the transformation. The transformation lifts the source
module to the meta-level, renames the module, and adds sorts, operators, and equations to
the meta-representation of the module.

The two overloaded operators

op cinni : Qid Type Type Type Type -> Module .

op cinni : Module Type Type Type Type -> Module .

189

B. Automatic Generation of CINNI Instances for the Maude System

only differ in their first argument: One can either specify the module’s name or give directly
the meta representation of the source module. Additionally, one has to specify the sorts that
will be used for: (i) substitutions, (ii) names, (iii) indexed names, and (iv) values, where
sorsts (i)–(iv) are sorts of the source module. To apply the transformation on our running
example, the transformation is executed using the command

red cinni(’PI-SYNTAX, ’Subst, ’Qid, ’Chan, ’Chan) .

The equation for the cinni operator, which takes the name of the source module as an
argument, uses the upModule operator to create the meta representation of the source module.
The invocation of the cinni operator with the resulting meta-representation of the module
is then evaluated by the second equation, which performs the transformation.

ceq cinni(MOD, SUBSTT, NAMET, INAMET, VALT) =

cinni(M, SUBSTT, NAMET, INAMET, VALT)

if M := upModule(MOD, false) .

ceq cinni(M, SUBSTT, NAMET, INAMET, VALT) = MWE

if RM := renameModule(M, qid("CINNI-" + string(getModuleName(M)))

{getParameterDeclList(M)})

/\ CTL := removeDoubles(getConstructedTypes(getOps(M)))

/\ MWS := addSorts(RM, SUBSTT)

/\ MWO := addOps(MWS, simpleSubst(NAMET, VALT, SUBSTT)

shiftSubst(NAMET, SUBSTT)

liftSubst(NAMET, SUBSTT)

substOps(removeDoubles(CTL INAMET),SUBSTT))

/\ MWE := addEqs(MWO, substBase(NAMET, VALT)

shiftEqs(NAMET)

liftEqs(NAMET, SUBSTT)

createSpecificEqs(getOps(M), SUBSTT,

NAMET, INAMET, CTL)

createIdentityEq(CTL, SUBSTT)) .

The effect of applying the second equation is as follows. First, the name of the source
module is prefixed with the string CINNI using the renameModule operator. Then, the following
sorts, operators, and equations are added using the addSorts, addOps, and addEqs operators,
respectively:

• The specified sort for substitutions.

• Operators for the three types of substitutions.

• For each constructed sort in the source module, one operator for prefixing substitu-
tions.

• Equations defining the semantics of the simple, shift, and lifted substitution.

• One syntax-specific equation for each syntactic constructor of L.

• Identity equations are added to avoid unnecessary substitutions.

The operators to rename a module, and to add sorts, operators, or equations are not
described here. A detailed description of these operators is given in the subsection “A
Deadlock-Freedom Transformation” of [35, p. 480]. The automatic creation of the CINNI

190

B.4. The Transformation

operators and equations is described in more detail in the next subsections. Subsection
B.4.1 describes how the CINNI operators are created, and Subsection B.4.2 shows how the
CINNI equations, including the syntax-specific equations, are created.

B.4.1. Creation of CINNI operators

The meta-representation of a Maude operator is a term of sort OpDecl and is defined in the
Maude module META-MODULE. Terms of sort OpDeclSet represent sets of operators and can be
concatenated using the associative and commutative operator __ for which the term none

acts as identity. We construct the operators for the simple, shift, and lifted substitution
by using the auxiliary operators simpleSubst, shiftSubst, and liftSubst, respectively. The
equation

eq simpleSubst(NAMET, VALT, SUBSTT)

= (op ’‘[_:=_‘] : NAMET VALT -> SUBSTT [none] .) .

takes the type of names, values, and substitutions, as argument, and yields the meta-
representation of the simple substitution operator. In our running example, the term

simpleSubst(’Qid, ’Chan, ’Subst)

would be reduced to the following term, which is the meta-representation of the simple
substitution operator of CINNIπ.

op ’‘[_:=_‘] : ’Qid ’Chan -> ’Subst [none] .

The equations

eq shiftSubst(NAMET, SUBSTT)

= (op ’‘[shift_‘] : NAMET -> SUBSTT [none] .) .

eq liftSubst(NAMET, SUBSTT)

= (op ’‘[lift__‘] : NAMET SUBSTT -> SUBSTT [none] .) .

take the type of names and substitutions, and create the meta-representation of the shift
and lifted substitution.

Additionally, for each sort that is constructed in the source module, the corresponding
operators to prepend substitutions are added. The operator substOps is defined recursively
on the structure of the first argument. The base case takes a term of sort Type, and the sort
of substitutions and creates the meta representation of the prefixing operator for that type.

eq substOps(T, ST) = (op ’__ : ST T -> T [none] .) .

The two recursive cases

ceq substOps(T TL, ST) = substOps(T, ST) substOps(TL, ST) if T =/= nil .

ceq substOps(T TL, ST) = substOps(TL, ST) if T == nil .

decompose the first argument — of sort TypeList — structurally.

B.4.2. Creation of CINNI equations

As for the meta-representation of operators, the meta-representation of equations can be
found in the Maude module META-MODULE. Equations and sets of equations are represented at
the meta-level by terms of the sorts Equation and EquationSet.

We first describe the creation of the equations that define the semantics of the CINNI
substitution operators. Then, we describe the creation of the syntax-specific equations.

191

B. Automatic Generation of CINNI Instances for the Maude System

Creation of the equations for the CINNI operators

The auxiliary operators substBase, shiftEqs, and liftEqs create the meta representation of
the equations defining the semantics of substitutions. For example, the equations

eq shiftEqs(NAMET) =

shiftEq1(NAMET) shiftEq2(NAMET) .

eq shiftEq1(NAMET) =

(eq ’__[’‘[shift_‘][qid("X:" + string(NAMET))],

’_‘{_‘}[qid("X:" + string(NAMET)), ’M:Nat]]

= ’_‘{_‘}[qid("X:" + string(NAMET)), ’s_[’M:Nat]] [none] .) .

eq shiftEq2(NAMET) =

(ceq ’__[’‘[shift_‘][qid("X:" + string(NAMET))],

’_‘{_‘}[qid("Y:" + string(NAMET)), ’M:Nat]]

= ’_‘{_‘}[qid("Y:" + string(NAMET)), ’M:Nat]

if ’_=/=_[(qid("Y:" + string(NAMET)),

qid("X:" + string(NAMET)))] = ’true.Bool [none] .) .

take the type of names as an argument and return the meta-representation of the following
two equations of the CINNI calculus:

↑X Xm = Xm+1

↑X Yn = Yn if X 6= Y

The equations defining the operators substBase and shiftEqs are omitted for the sake of
brevity.

Creation of the syntax specific equations

In a last step, the syntax-specific equations are created. A schematic overview of the auxil-
iary functions, that are used, is shown in Figure B.2. Syntax-specific equations have to be
created for each operator of the source module. The operator getOperators returns the meta-
representation of the operators defined in the given module. For each of these operators, say
f, the createSpecific operator is executed. Using the two auxiliary functions createLeft and
createRight, which create the left-hand and right-hand side of the syntax-specific equation,
the equations are created.

Let us assume that the declaration for the operator f contains as a metadata attribute,

op f : T1 ... TN -> T [ctor metadata i1->j1,...,iM->jM]

with i1,...,iM,j1,...,jM ∈ {1, ..., N}. Thus, the operator f binds the argument ik in the
argument jk for k ∈ {1, . . . ,M}. Furthermore, we assume that no two names are bound in
the same argument. This is expressed by the requirement that jk 6= jl for all l 6= k.

If we are applying a substitution S to f(t1, . . . , tn), then the substitutions Sj for the jth
argument tj is of the form [shift Xi:Ti S] if i->j appeared in the metadata declaration of f,
i.e., if there is an argument i that is bound in the argument j. Otherwise, if no argument
is bound in the argument j, the substitution Sj is equal to S. To better illustrate how the
algorithm works, we create the syntax specific equation based on the operator declaration of
the

op new[_]_ : Qid Trm -> Trm [ctor metadata "1->2"] .

192

B.4. The Transformation

op f:T1 ... TN -> T [ctor metadata M]

getOperators(MOD)

X1:T1,...,XN:TN (S1 X1:T1),...,(SN XN:TN)

eq S f(X1:T1,...,XN:TN) f((S1 X1:T1),...,(SN XN:TN))=

createSpecificEq

createLeft createRight

Figure B.2.: Creation of a syntac-specific equation

operator of our running example. The meta-representation of the syntax specific equation is
thereby defined by the equation

eq __[S:’Subst, ’new‘[_‘]_[VAR0:’Qid, VAR1:’Trm]] =

’new‘[_‘]_[VAR0:’Qid,’lift[VAR0:’Qid, S:’Subst]] .

Creating the left-hand side of a syntax-specific equation. Given a list of types
and the index of the first variable as argument, the createLeft operator creates the meta-
representation of the argument list of an equation.

op createLeft : TypeList Nat -> NeTermList .

eq createLeft(T TL, INDEX) =

createLeft(T, INDEX) , createLeft(TL, INDEX + 1) .

eq createLeft(T, INDEX) =

qid("VAR" + string(INDEX, 10) + ":" + string(T)) .

The first equation recursively decomposes the given term of sort TypeList, and counts the
current argument position in the second argument. If the first argument is a term of sort
Type, the second equation creates the meta-representation VARi of a variable at argument
position i. The term

createLeft(’Qid ’Trm, 0)

in our running example is reduced to

VAR0:’Qid, VAR1:’Trm

which is the left-hand side of the syntax specific equation of the operator

op new[_]_ : Qid Trm -> Trm [ctor metadata "1->2"] .

Creating the right-hand side of a syntax-specific equation. The right-hand side
of a syntax-specific equation also depends on the metadata attribute. Thus, the operator
createRight takes the list of types from the operator declaration, the current index of the
variable, the variable for the substitution, a list of types that should be lifted, the mapping
between arguments and the bound arguments, and the type of names as arguments, and
creates the meta-representation of the list of variables for the right-hand side of the equation.

193

B. Automatic Generation of CINNI Instances for the Maude System

op createRight : TypeList Nat Variable TypeList Map{Nat, Nat} Type

-> NeTermList .

The first equation recursively decomposes the first argument of TypeList, and increases
the index of the current variable. The second equation creates the meta-representation, if
the first argument is a term of sort Type. If the type is not included in the list of relevant
types for substitution, the substitution is omitted. Otherwise, as discussed above, if the
argument at the current index binds a name, i.e., $hasMapping(MAP, INDEX)= true, then the
lifted substitution is created. Otherwise, the substitution is simply passed down to the
argument.

eq createRight(T TL, INDEX, SVAR, TTL, MAP, VNT) =

createRight(T, INDEX, SVAR, TTL, MAP, VNT) ,

createRight(TL, INDEX + 1, SVAR, TTL, MAP, VNT) .

eq createRight(T, INDEX, SVAR, TTL, MAP, VNT) =

if T in TTL then

if ($hasMapping(MAP, INDEX)) then

’__[’‘[lift__‘][qid("VAR" + string(MAP[INDEX], 10) + ":" +

string(VNT)) ,SVAR], qid("VAR" + string(INDEX, 10) + ":" +

string(T))]

else

’__[SVAR, qid("VAR" + string(INDEX, 10) + ":" + string(T))]

fi

else

qid("VAR" + string(INDEX, 10) + ":" + string(T))

fi .

In our running example, the right-hand side of the equation is created by the term

createRight(’Qid ’Trm, 0, ’S:Subst, ’Qid ’Trm, 1->2, ’Qid)

This results in the meta-representation

VAR0:’Qid,’lift[VAR0:’Qid, S:’Subst]

Creating the syntax-specific equation. To bring it all together, createSpecificEqs and
createSpecificEq create the syntax specific equations.

op createSpecificEqs : OpDeclSet Type Type Type TypeList

-> EquationSet .

op createSpecificEq : OpDecl Type Type Type TypeList -> EquationSet .

Except for the first parameter — either a set of operator declarations, or a single operator
declaration — both operators take the same parameters: the type of substitutions, the type
of names, the type of indexed names, and a list of types that can be substituted. The operator
createSpecificEqs recursively creates the syntax-specific equations using the createSpecificEq

operator.

eq createSpecificEqs(OPD, SUBSTT, VARNAMET, VART, TERMTL)

= createSpecificEq(OPD, SUBSTT, VARNAMET, VART, TERMTL) .

ceq createSpecificEqs(OPD OPDS, SUBSTT, VARNAMET, VART, TERMTL)

= createSpecificEqs(OPD, SUBSTT, VARNAMET, VART, TERMTL)

createSpecificEqs(OPDS, SUBSTT, VARNAMET, VART, TERMTL)

if OPDS =/= none .

194

B.5. The createCINNI Tool

The behavior of the createSpecificEq operator is defined in three equations. First, if
the operator’s definition contains the ctor and metadata S attributes, S is parsed, and the
createLeft and createRight operators are used to construct the resulting meta-representation
of the syntax-specific equation.

ceq createSpecificEq((op N : TL -> TERMT [ctor metadata(S) AS].),

SUBSTT, VARNAMET, VART, TERMTL) =

(eq ’__[SVAR, N[createLeft(TL, 0)]]

= N[createRight(TL, 0, SVAR, (TERMTL VART), getPairs(S),

VARNAMET)] [none] .)

if SVAR := qid("S:" + string(SUBSTT))

/\ TL =/= nil /\ TL in (TERMTL VART) .

Second, if the operator’s definition contains the ctor and id(ID) attribute (but no metadata

attribute), then the substitution is simply passed down to the arguments. A conditional
equation is created, since all arguments are required to be unequal to the identity element
of the operator to prevent infinite loops.

ceq createSpecificEq((op N : TL -> TERMT [ctor id(ID) AS].),

SUBSTT, VARNAMET, VART, TERMTL) =

(ceq ’__[SVAR, N[createLeft(TL, 0)]]

= N[createRight(TL, 0, SVAR, (TERMTL VART), empty, VARNAMET)]

if createUnequalToId(TL, ID, 0) [none] .)

if SVAR := qid("S:" + string(SUBSTT))

/\ TL =/= nil /\ TL in (TERMTL VART) .

Finally, if the ctor attribute is contained in the operator’s definition (and no metadata or
id attribute), the syntax-specific equation is created using the createLeft and createRight

operators.

eq createSpecificEq((op N : TL -> TERMT [AS].),

SUBSTT, VARNAMET, VART, TERMTL) =

if ctor in AS and TL =/= nil and TL in (TERMTL VART) then

(eq ’__[qid("S:" + string(SUBSTT)), N[createLeft(TL, 0)]]

= N[createRight(TL, 0, qid("S:" + string(SUBSTT)),

(TERMTL VART), empty, VARNAMET)] [none] .)

else

none

fi [owise] .

B.5. The createCINNI Tool

The Full Maude show module command is used to retrieve the Maude representation of the
meta-module that is created using the cinni command. Thus, the created meta-module has
to be loaded in the Full Maude database, then printed using the show module, and finally
the result has to be filtered. The createCINNI tool is defined by the shell script

#!/bin/bash

if [$# -ne 6]

then

echo "Usage: ./createCINNI.sh {module name} {substitution sort}

{name sort} {indexed name sort} {value sort} {module file}"

exit 65

fi

195

B. Automatic Generation of CINNI Instances for the Maude System

echo "

(select META-LEVEL .)

(fmod CREATE-CINNI is

ex META-LEVEL .

ex CINNI-META .

op module : -> Module .

eq module = cinni(’$1, ’$2, ’$3, ’$4, ’$5) .

endfm)

(load module .)

(show module CINNI-$1 .)

q" | maude -no-prelude -no-banner -no-advise -no-wrap -no-ansi-color prelude.maude

CINNIMETA.maude $6 full-maude26.maude | awk ’/fmod/,/endfm/’ > CINNI-$6

which takes six parameters: The name of the source module, the required sort of substi-
tutions, the sort of names, the sort of indexed names, the sort of values, and a the name of
the file containing the source module.

Basically, a new Full Maude module with name CREATE-CINNI is created, which extends the
META-LEVEL and the CINNI-META module. Additionally, a constant operator module is created
that is reduced to the meta-representation of the new module. Then, the new module is
loaded into the Full Maude database using the load command. Finally, the module is printed
using the show module command. The result is then filtered with an regular expression and
the module is written in a file.

In our example of Milner’s π calculus, the createCINNI tool is executed using the command

./createCINNI PI-SYNTAX Subst Qid Chan Chan pi-syntax-file

The resulting Full Maude module

(fmod CREATE-CINNI is

ex META-LEVEL .

ex CINNI-META .

op module : -> Module .

eq module = cinni(’PI-SYNTAX, ’Subst, ’Qid, ’Chan, ’Chan) .

endfm)

is loaded in the Full Maude database. The resulting module is then printed and written to
the file CINNI-pi-syntax-file.

The create CINNI tool can be found on the Maude homepage:
http://maude.cs.uiuc.edu/tools/createcinni.

196

Appendix C
A Modularized Actor Model for

Statistical Model Checking

C.1. The SAMPLER module

The module SAMPLER protects the predefined Maude modules RANDOM and COUNTER.
It provides operators which return random values according to various probability distribu-
tions.

In the following, the variables

vars MAXNAT N RANK RND : Nat .

vars MIN MAX R MEAN STD-DEVIATION ALPHA F FREQ DICE : Float .

vars A B : Float .

are used.
The operators

op rand : -> [Float] .

eq rand = float(random(counter) / 4294967296) .

and

op rrand : -> [Rat] .

eq rrand = random(counter) / 4294967296 .

are used to create random floating point and rational numbers in the range (0, 1]1.
A Bernoulli-distributed random boolean value is generated by the operator

op sampleBerWithP : Float -> [Bool] .

eq sampleBerWithP(R) = rand < R .

which takes a success probability as an argument.
Uniformly distributed natural numbers are generated by the operator

op sampleUniWithInt : Nat -> [Nat] .

eq sampleUniWithInt(MAXNAT) = floor(rrand * MAXNAT) .

14294967296 = 232. The operator random of the built-in Maude module RANDOM returns terms of the
sort Nat that are in the range [0, 232 − 1].

197

C. A Modularized Actor Model for Statistical Model Checking

which takes a maximum value (MAXNAT) as an argument. The returned natural number is in
the range [0,MAXNAT].

Random floating point values between an upper (MAX, inclusive) and a lower (MIN, exclusive)
bound are generated by the operator

op genRandom : Float Float -> [Float] .

eq genRandom(MIN, MAX) = rand * (MAX - MIN) + MIN .

Random values according to a normal distribution are generated using the Box-Muller
method [29]. The method generates (pairs of) independent standard normally distributed
random numbers from a source of uniformly distributed random numbers. The operator

eq boxMullerValue(MEAN, STD-DEVIATION) =

MEAN + STD-DEVIATION * sqrt(-2.0 * log(genRandom(0.0, 1.0)))

* cos(2.0 * pi * genRandom(0.0, 1.0)) .

takes a mean (MEAN) and a standard deviation (STD-DEVIATION) as arguments and returns a
random number according to N (MEAN,STD-DEVIATION2). A pair of normally distributed values
can be generated more efficiently than a single value using the Box-Muller method. The
operator boxMullerPair

sort Pair .

op {_,_} : Float Float -> Pair [ctor] .

op boxMullerPair : Float Float -> [Pair] .

op boxMullerExpr : Float [Float] [Float] -> [Pair] .

eq boxMullerExpr(MEAN, A, B) =

{ MEAN + A * cos(B), MEAN + A * sin(B) } .

eq boxMullerPair(MEAN, STD-DEVIATION) =

boxMullerExpr(MEAN, STD-DEVIATION

* sqrt(-2.0 * log(genRandom(0.0, 1.0))),

2.0 * pi * genRandom(0.0, 1.0)) .

can be used to create a pair (term of sort Pair) of normally distributed random values
according to N (MEAN,STD-DEVIATION2). Just as boxMullerValue, the operator takes a mean (MEAN
) and a standard deviation (STD-DEVIATION) as arguments.

Random Pareto values are generated by the operator

op paretoValue : -> [Float] .

eq paretoValue = (1.0 - genRandom(0.0, 1.0)) ^ -1.0 .

which returns a floating point number in the range (1,∞).
Random values according to a Zipf distribution with parameters skew and maxZipf can be

generated using the operator

op zipfValue : -> [Nat] .

The parameters of the distribution are defined by the operators and equations

op maxZipf : -> Nat .

eq maxZipf = 1000 .

op skew : -> Float .

eq skew = 1.0 .

The helper functions

op bottom : -> Float [memo] .

op bottomRec : Nat Float -> Float .

198

C.1. The SAMPLER module

eq bottom = bottomRec(1, 0.0) .

eq bottomRec(N, F) =

if N <= maxZipf then

bottomRec(s(N), F + 1.0 / (float(N) ^ skew))

else

F

fi .

op probability : Nat -> [Float] [memo] .

eq probability(N) = (1.0 / (float(N) ^ skew)) / bottom .

op genRecExpression : Nat Float -> [Nat] .

eq genRecExpression(N, F) = zipfValueRec(N, probability(s(N)), F) .

op zipfValueRec : Nat Float Float -> [Nat] .

eq zipfValueRec(RANK, FREQ, DICE) =

if DICE >= FREQ then

genRecExpression(sampleUniWithInt(maxZipf), genRandom(0.0, 1.0))

else

s(RANK)

fi .

eq zipfValueRec(0, 0.0, 0.0) =

genRecExpression(sampleUniWithInt(maxZipf), genRandom(0.0, 1.0)) .

are used by the zipfValue operator. Finally, the equation

eq zipfValue = zipfValueRec(0, 0.0, 0.0) .

defines the value generating operator.
It is of note that all operators in the SAMPLER module do not have a sorts but the

respective kind. This is due to the fact that all operators are based on calls to random(

counter) and only a rewrite substitutes a random term of sort Nat in the range [0, 232 − 1]
for the term random(counter) of kind [Nat].

The operators presented in this Section are summarized in Table C.1.

Operator Argument(s) Result

rand - [Float] ∈ (0, 1]
rrand - [Rat] ∈ (0, 1]
sampleBerWithP success probability (Float) [Bool] ∈ {true, false}
genRandom minimum (MIN : Float) [Float] ∈ (MIN,MAX]

maximum(MAX : Float)
boxMullerValue mean (Float) [Float]

standard deviation (Float)
boxMullerPair mean (Float) [Pair]

standard deviation (Float)
paretoValue - [Float] ∈ (0,∞)
zipfValue -2 [Nat] ∈ [1,maxZipf]

Figure C.1.: Operators to generate random values

2Paramters are indirectly set by the equations that define the constant operators maxZipf and skew.

199

Appendix D
Guaranteeing Stable Availability under

Distributed Denial of Service Attacks

D.1. Maude Specification of a Generic Actor Generator

The generic actor generator is specified as a Russian dolls actor that periodically creates and
initializes new actors. The generated actors are kept within the generator’s configuration,
so that messages that are addressed to the internal actors and messages that are addressed
to the outside are forwarded.

Since the generator generically wraps an actor, the theory

th GENERATOR-INTERFACE is

pr FLOAT .

pr ACTOR-MODEL .

op generator-spawn-period : -> Float .

op generator-create : AttributeSet Float Address -> Config .

endth

needs to be implemented. The operator generator-spawn-period specifies the period for gen-
erating new actors. The operator generator-create takes the attributes of the generator, the
current global time, and a new address as arguments and returns the actor together with
the messages needed for the initialization.

The system module GENERATOR specifies the behavior of the generator. It is generic
with respect to the theory GENERATOR-INTERFACE. The actor type

op Generator : -> ActorType .

specifies the type of the generator. The internal state of the generator is represented by the
attribute

op count:_ : Nat -> Attribute [gather(&)] .

which counts the generated actors. The generator periodically sends a message with the
contents

op spawn : -> Contents .

201

D. Guaranteeing Stable Availability under Distributed Denial of Service Attacks

to itself to trigger the generation of a new actor. The following rewrite rules make use of
the variables

var A A’ : Address .

var NG : NameGenerator .

var N : Nat .

var C : Config .

var gt : Float .

var AS : AttributeSet .

var CO : Contents .

The rewrite rule

rl [GENERATOR-SPAWN] :

< A : Generator | count: N, config: C NG, AS >

{gt, A <- spawn}

=>

< A : Generator | count: s(N),

config: generator-create(AS, gt, NG .new) C NG .next, AS >

[gt + generator-spawn-period, A <- spawn] .

periodically generates a new actor by calling the operator generator-create. Finally, the
rewrite rules

crl [GENERATOR-PASS-DOWN] :

< A : Generator | config: C, AS >

{gt, A . A’ <- CO}

=>

< A : Generator | config: [gt, A . A’ <- CO] C, AS >

if

CO =/= spawn .

crl [GENERATOR-PASS-UP1] :

< A : Generator | config: {gt, A’ <- CO } C, AS >

=>

< A : Generator | config: C, AS >

[gt, A’ <- CO]

if

| A’ | <= | A | .

crl [GENERATOR-PASS-UP1] :

< A : Generator | config: {gt, A’ <- CO } C, AS >

=>

< A : Generator | config: C, AS >

[gt, A’ <- CO]

if

| A’ | > | A | /\ prefix(A’, | A |) =/= A .

forward messages into the generator’s configuration and to the outside. The first rewrite rule
consumes messages whose receiver’s address is prefixed by the generator’s address. This is
the case if the receiver of the message is a child in the generator’s address tree. The second
and third rewrite rules consume a message from within the generator’s configuration and
pass it to the outside. The second rewrite rule consumes messages that are addressed to
an actor that is located at a higher level in the address hierarchy. The last rewrite rule
consumes messages whose receiver is located in another subtree of the address hierarchy.

202

Appendix E
QoS Analysis of a Cloud-based
Publish/Subscribe Middleware

E.1. Predicate filter generator for the stock exchange
information system model

var SWITCH : Float .

op SEpfGen : -> [PredicateFilter] .

op SEpfGenSwitch : [Float] -> [PredicateFilter] .

eq SEpfGen = SEpfGenSwitch(genRandom(0.0, 1.0)) .

--- Predicate Filter 1: Listen to orders of a specific Listing.

ceq SEpfGenSwitch(SWITCH) =

(pos(0) == topic(s(sampleUniWithInt(listings))))

if SWITCH < 0.20 .

--- Predicate Filter 2: Listen to orders of a specific Listing where the volume of

--- the orders is greater or equal to a specific value.

ceq SEpfGenSwitch(SWITCH) =

(pos(0) == topic(s(sampleUniWithInt(listings)))) ;

(pos(2) >= floor(paretoValue))

if SWITCH >= 0.20

/\ SWITCH < 0.25 .

--- Predicate Filter 3: Listen to orders of a specific Listing where the volume of

--- the orders is greater or equal to a specific value and the order-type is BUY.

ceq SEpfGenSwitch(SWITCH) =

(pos(0) == topic(s(sampleUniWithInt(listings)))) ;

(pos(2) >= floor(paretoValue)) ;

(pos(3) == 1.0)

if SWITCH >= 0.25

/\ SWITCH < 0.275 .

--- Predicate Filter 4: Listen to orders of a specific Listing where the volume of

--- the orders is greater or equal to a specific value and the order-type is SELL.

203

E. QoS Analysis of a Cloud-based Publish/Subscribe Middleware

ceq SEpfGenSwitch(SWITCH) =

(pos(0) == topic(s(sampleUniWithInt(listings)))) ;

(pos(2) >= floor(paretoValue)) ;

(pos(3) == 0.0)

if SWITCH >= 0.275

/\ SWITCH < 0.3 .

--- Predicate Filter 5: Listen to orders where the volume of the orders is greater

--- or equal to a specific value.

ceq SEpfGenSwitch(SWITCH) =

(pos(2) >= floor(paretoValue))

if SWITCH >= 0.3

/\ SWITCH < 0.4 .

--- Predicate Filter 6: Listen to orders of a specific Listing where the price is

--- greater or equal to a specific value.

ceq SEpfGenSwitch(SWITCH) =

(pos(0) == topic(s(sampleUniWithInt(listings)))) ;

(pos(1) >= floor(boxMullerValue(stockValueMean, stockValueStdDeviation / 2.0)))

if SWITCH >= 0.4

/\ SWITCH < 0.5 .

--- Predicate Filter 7: Listen to orders of a specific Listing where the price is

--- greater or equal to a specific value and the order-type is BUY.

ceq SEpfGenSwitch(SWITCH) =

(pos(0) == topic(s(sampleUniWithInt(listings)))) ;

(pos(1) >= floor(boxMullerValue(stockValueMean, stockValueStdDeviation / 2.0)))

; (pos(3) == 1.0)

if SWITCH >= 0.5

/\ SWITCH < 0.6 .

--- Predicate Filter 8: Listen to orders of a specific Listing where the price is

--- greater or equal to a specific value and the order-type is SELL.

ceq SEpfGenSwitch(SWITCH) =

(pos(0) == topic(s(sampleUniWithInt(listings)))) ;

(pos(1) >= floor(boxMullerValue(stockValueMean, stockValueStdDeviation / 2.0)))

; (pos(3) == 0.0)

if SWITCH >= 0.6

/\ SWITCH < 0.7 .

--- Predicate Filter 9: Listen to orders of a specific Listing where the price is

--- less or equal to a specific value.

ceq SEpfGenSwitch(SWITCH) =

(pos(0) == topic(s(sampleUniWithInt(listings)))) ;

(pos(1) <= floor(boxMullerValue(stockValueMean, stockValueStdDeviation / 2.0)))

if SWITCH >= 0.7

/\ SWITCH < 0.8 .

--- Predicate Filter 10: Listen to orders of a specific Listing where the price is

--- less or equal to a specific value and the order-type is BUY.

ceq SEpfGenSwitch(SWITCH) =

(pos(0) == topic(s(sampleUniWithInt(listings)))) ;

(pos(1) >= floor(boxMullerValue(stockValueMean, stockValueStdDeviation / 2.0)))

; (pos(3) == 1.0)

if SWITCH >= 0.8

/\ SWITCH < 0.9 .

204

E.2. Initial configuration of the stock exchange information system model

--- Predicate Filter 11: Listen to orders of a specific Listing where the price is

--- less or equal to a specific value and the order-type is SELL.

ceq SEpfGenSwitch(SWITCH) =

(pos(0) == topic(s(sampleUniWithInt(listings)))) ;

(pos(1) >= floor(boxMullerValue(stockValueMean, stockValueStdDeviation / 2.0)))

; (pos(3) == 0.0)

if SWITCH >= 0.9 .

E.1.1. The module MODEL-PARAMS

eq listings = 100 .

eq stockValueMean = 1000.0 .

eq stockValueStdDeviation = 100.0 .

eq numBrokers = 20 .

eq numPublishers = 100 .

eq pubRate = 1.000 .

eq procRate = 0.001 .

eq latencyMean = 30.0 .

eq latencyStdDev = 8.0 .

eq latency = boxMullerValue(latencyMean, latencyStdDev) / 1000.0 .

eq predicateFilterGenerator = SEpfGen .

eq contentAttributesGenerator = SEContentAttributesGen .

eq LIMIT = 300.0 .

eq initDelay = 0.05 .

--- Varying parameters

eq numSubscribers = 100 .

eq lifetime = 1.000 .

E.2. Initial configuration of the stock exchange information

system model

eq initState =

--- Broker in Seattle

< 1 : Broker |

routingTable: [0, nilRouting],

eventQueue: [0, nilQueue],

subscribers: mtAddressList,

neighbors: 2,

drops: 0, forwards: 0, sent: 0 >

--- Broker in San Francisco

< 2 : Broker |

routingTable: [0, nilRouting],

eventQueue: [0, nilQueue],

subscribers: mtAddressList,

neighbors: 1 ; 3 ; 4,

drops: 0, forwards: 0, sent: 0 >

--- Broker in San Diego

205

E. QoS Analysis of a Cloud-based Publish/Subscribe Middleware

< 3 : Broker |

routingTable: [0, nilRouting],

eventQueue: [0, nilQueue],

subscribers: mtAddressList,

neighbors: 2,

drops: 0, forwards: 0, sent: 0 >

--- Broker in Champaign

< 4 : Broker |

routingTable: [0, nilRouting],

eventQueue: [0, nilQueue],

subscribers: mtAddressList,

neighbors: 2 ; 5 ; 6,

drops: 0, forwards: 0, sent: 0 >

--- Broker in New York

< 5 : Broker |

routingTable: [0, nilRouting],

eventQueue: [0, nilQueue],

subscribers: mtAddressList,

neighbors: 4 ; 8 ; 9,

drops: 0, forwards: 0, sent: 0 >

--- Broker in Mexico City

< 6 : Broker |

routingTable: [0, nilRouting],

eventQueue: [0, nilQueue],

subscribers: mtAddressList,

neighbors: 4 ; 7,

drops: 0, forwards: 0, sent: 0 >

--- Broker in Rio de Janero

< 7 : Broker |

routingTable: [0, nilRouting],

eventQueue: [0, nilQueue],

subscribers: mtAddressList,

neighbors: 6,

drops: 0, forwards: 0, sent: 0 >

--- Broker in Toronto

< 8 : Broker |

routingTable: [0, nilRouting],

eventQueue: [0, nilQueue],

subscribers: mtAddressList,

neighbors: 5,

drops: 0, forwards: 0, sent: 0 >

--- Broker in London

< 9 : Broker |

routingTable: [0, nilRouting],

eventQueue: [0, nilQueue],

subscribers: mtAddressList,

neighbors: 5 ; 10 ; 12,

drops: 0, forwards: 0, sent: 0 >

--- Broker in Amsterdam

< 10 : Broker |

routingTable: [0, nilRouting],

eventQueue: [0, nilQueue],

subscribers: mtAddressList,

neighbors: 9 ; 11,

drops: 0, forwards: 0, sent: 0 >

--- Broker in Madrid

206

E.2. Initial configuration of the stock exchange information system model

< 11 : Broker |

routingTable: [0, nilRouting],

eventQueue: [0, nilQueue],

subscribers: mtAddressList,

neighbors: 10,

drops: 0, forwards: 0, sent: 0 >

--- Broker in Munich

< 12 : Broker |

routingTable: [0, nilRouting],

eventQueue: [0, nilQueue],

subscribers: mtAddressList,

neighbors: 9 ; 13 ; 14,

drops: 0, forwards: 0, sent: 0 >

--- Broker in Moskow

< 13 : Broker |

routingTable: [0, nilRouting],

eventQueue: [0, nilQueue],

subscribers: mtAddressList,

neighbors: 12,

drops: 0, forwards: 0, sent: 0 >

--- Broker in Rome

< 14 : Broker |

routingTable: [0, nilRouting],

eventQueue: [0, nilQueue],

subscribers: mtAddressList,

neighbors: 12 ; 15,

drops: 0, forwards: 0, sent: 0 >

--- Broker in Haifa

< 15 : Broker |

routingTable: [0, nilRouting],

eventQueue: [0, nilQueue],

subscribers: mtAddressList,

neighbors: 14 ; 16 ; 17,

drops: 0, forwards: 0, sent: 0 >

--- Broker in Johannisburg

< 16 : Broker |

routingTable: [0, nilRouting],

eventQueue: [0, nilQueue],

subscribers: mtAddressList,

neighbors: 15,

drops: 0, forwards: 0, sent: 0 >

--- Broker in Mumbai

< 17 : Broker |

routingTable: [0, nilRouting],

eventQueue: [0, nilQueue],

subscribers: mtAddressList,

neighbors: 15 ; 18 ; 19,

drops: 0, forwards: 0, sent: 0 >

--- Broker in Sydney

< 18 : Broker |

routingTable: [0, nilRouting],

eventQueue: [0, nilQueue],

subscribers: mtAddressList,

neighbors: 17,

drops: 0, forwards: 0, sent: 0 >

--- Broker in Shanghai

207

E. QoS Analysis of a Cloud-based Publish/Subscribe Middleware

< 19 : Broker |

routingTable: [0, nilRouting],

eventQueue: [0, nilQueue],

subscribers: mtAddressList,

neighbors: 17 ; 20,

drops: 0, forwards: 0, sent: 0 >

--- Broker in Tokyo

< 20 : Broker |

routingTable: [0, nilRouting],

eventQueue: [0, nilQueue],

subscribers: mtAddressList,

neighbors: 19,

drops: 0, forwards: 0, sent: 0 >

< 21 : PublisherGenerator | mt >

[0.0, 21 <- generate]

< 22 : SubscriberGenerator | mt >

[0.0, 22 <- generate]

< 23 >

{ 0.0 | nil } .

E.3. Initial configuration of the Cloud-based stock exchange
information system model

eq initState =

--- Broker in Seattle

< 1 : BrokerReplicator |

brokerList: mtAddressList,

config: < 1 . 1 >

< 1 . 0 : BrokerData |

routingTable: [0, nilRouting],

neighbors: 2,

subscribers: mtAddressList >,

eventCnt: 0,

eventFlowRate: 0.0 >

[0.0, 1 <- startBroker]

--- Broker in San Francisco

< 2 : BrokerReplicator |

brokerList: mtAddressList,

config: < 2 . 1 >

< 2 . 0 : BrokerData |

routingTable: [0, nilRouting],

neighbors: 1 ; 3 ; 4,

subscribers: mtAddressList >,

eventCnt: 0,

eventFlowRate: 0.0 >

[0.0, 2 <- startBroker]

--- Broker in San Diego

< 3 : BrokerReplicator |

brokerList: mtAddressList,

config: < 3 . 1 >

< 3 . 0 : BrokerData |

routingTable: [0, nilRouting],

neighbors: 2,

subscribers: mtAddressList >,

eventCnt: 0,

208

E.3. Initial configuration of the Cloud-based stock exchange information system model

eventFlowRate: 0.0 >

[0.0, 3 <- startBroker]

--- Broker in Champaign

< 4 : BrokerReplicator |

brokerList: mtAddressList,

config: < 4 . 1 >

< 4 . 0 : BrokerData |

routingTable: [0, nilRouting],

neighbors: 2 ; 5 ; 6,

subscribers: mtAddressList >,

eventCnt: 0,

eventFlowRate: 0.0 >

[0.0, 4 <- startBroker]

--- Broker in New York

< 5 : BrokerReplicator |

brokerList: mtAddressList,

config: < 5 . 1 >

< 5 . 0 : BrokerData |

routingTable: [0, nilRouting],

neighbors: 4 ; 8 ; 9,

subscribers: mtAddressList >,

eventCnt: 0,

eventFlowRate: 0.0 >

[0.0, 5 <- startBroker]

--- Broker in Mexico City

< 6 : BrokerReplicator |

brokerList: mtAddressList,

config: < 6 . 1 >

< 6 . 0 : BrokerData |

routingTable: [0, nilRouting],

neighbors: 4 ; 7,

subscribers: mtAddressList >,

eventCnt: 0,

eventFlowRate: 0.0 >

[0.0, 6 <- startBroker]

--- Broker in Rio de Janero

< 7 : BrokerReplicator |

brokerList: mtAddressList,

config: < 7 . 1 >

< 7 . 0 : BrokerData |

routingTable: [0, nilRouting],

neighbors: 6,

subscribers: mtAddressList >,

eventCnt: 0,

eventFlowRate: 0.0 >

[0.0, 7 <- startBroker]

--- Broker in Toronto

< 8 : BrokerReplicator |

brokerList: mtAddressList,

config: < 8 . 1 >

< 8 . 0 : BrokerData |

routingTable: [0, nilRouting],

neighbors: 5,

subscribers: mtAddressList >,

eventCnt: 0,

209

E. QoS Analysis of a Cloud-based Publish/Subscribe Middleware

eventFlowRate: 0.0 >

[0.0, 8 <- startBroker]

--- Broker in London

< 9 : BrokerReplicator |

brokerList: mtAddressList,

config: < 9 . 1 >

< 9 . 0 : BrokerData |

routingTable: [0, nilRouting],

neighbors: 5 ; 10 ; 12,

subscribers: mtAddressList >,

eventCnt: 0,

eventFlowRate: 0.0 >

[0.0, 9 <- startBroker]

--- Broker in Amsterdam

< 10 : BrokerReplicator |

brokerList: mtAddressList,

config: < 10 . 1 >

< 10 . 0 : BrokerData |

routingTable: [0, nilRouting],

neighbors: 9 ; 11,

subscribers: mtAddressList >,

eventCnt: 0,

eventFlowRate: 0.0 >

[0.0, 10 <- startBroker]

--- Broker in Madrid

< 11 : BrokerReplicator |

brokerList: mtAddressList,

config: < 11 . 1 >

< 11 . 0 : BrokerData |

routingTable: [0, nilRouting],

neighbors: 10,

subscribers: mtAddressList >,

eventCnt: 0,

eventFlowRate: 0.0 >

[0.0, 11 <- startBroker]

--- Broker in Munich

< 12 : BrokerReplicator |

brokerList: mtAddressList,

config: < 12 . 1 >

< 12 . 0 : BrokerData |

routingTable: [0, nilRouting],

neighbors: 9 ; 13 ; 14,

subscribers: mtAddressList >,

eventCnt: 0,

eventFlowRate: 0.0 >

[0.0, 12 <- startBroker]

--- Broker in Moskow

< 13 : BrokerReplicator |

brokerList: mtAddressList,

config: < 13 . 1 >

< 13 . 0 : BrokerData |

routingTable: [0, nilRouting],

neighbors: 12,

subscribers: mtAddressList >,

eventCnt: 0,

210

E.3. Initial configuration of the Cloud-based stock exchange information system model

eventFlowRate: 0.0 >

[0.0, 13 <- startBroker]

--- Broker in Rome

< 14 : BrokerReplicator |

brokerList: mtAddressList,

config: < 14 . 1 >

< 14 . 0 : BrokerData |

routingTable: [0, nilRouting],

neighbors: 12 ; 15,

subscribers: mtAddressList >,

eventCnt: 0,

eventFlowRate: 0.0 >

[0.0, 14 <- startBroker]

--- Broker in Haifa

< 15 : BrokerReplicator |

brokerList: mtAddressList,

config: < 15 . 1 >

< 15 . 0 : BrokerData |

routingTable: [0, nilRouting],

neighbors: 14 ; 16 ; 17,

subscribers: mtAddressList >,

eventCnt: 0,

eventFlowRate: 0.0 >

[0.0, 15 <- startBroker]

--- Broker in Johannisburg

< 16 : BrokerReplicator |

brokerList: mtAddressList,

config: < 16 . 1 >

< 16 . 0 : BrokerData |

routingTable: [0, nilRouting],

neighbors: 15,

subscribers: mtAddressList >,

eventCnt: 0,

eventFlowRate: 0.0 >

[0.0, 16 <- startBroker]

--- Broker in Mumbai

< 17 : BrokerReplicator |

brokerList: mtAddressList,

config: < 17 . 1 >

< 17 . 0 : BrokerData |

routingTable: [0, nilRouting],

neighbors: 15 ; 18 ; 19,

subscribers: mtAddressList >,

eventCnt: 0,

eventFlowRate: 0.0 >

[0.0, 17 <- startBroker]

--- Broker in Sydney

< 18 : BrokerReplicator |

brokerList: mtAddressList,

config: < 18 . 1 >

< 18 . 0 : BrokerData |

routingTable: [0, nilRouting],

neighbors: 17,

subscribers: mtAddressList >,

eventCnt: 0,

211

E. QoS Analysis of a Cloud-based Publish/Subscribe Middleware

eventFlowRate: 0.0 >

[0.0, 18 <- startBroker]

--- Broker in Shanghai

< 19 : BrokerReplicator |

brokerList: mtAddressList,

config: < 19 . 1 >

< 19 . 0 : BrokerData |

routingTable: [0, nilRouting],

neighbors: 17 ; 20,

subscribers: mtAddressList >,

eventCnt: 0,

eventFlowRate: 0.0 >

[0.0, 19 <- startBroker]

--- Broker in Tokyo

< 20 : BrokerReplicator |

brokerList: mtAddressList,

config: < 20 . 1 >

< 20 . 0 : BrokerData |

routingTable: [0, nilRouting],

neighbors: 19,

subscribers: mtAddressList >,

eventCnt: 0,

eventFlowRate: 0.0 >

[0.0, 20 <- startBroker]

< 21 : PublisherGenerator | mt >

[0.0, 21 <- generate]

< 22 : SubscriberGenerator | mt >

[0.0, 22 <- generate]

< 23 >

{ 0.0 | nil } .

212

Bibliography

[1] M. Abadi, M. Burrows, M. Manasse, and T. Wobber. Moderately hard, memory-bound
functions. ACM Transactions on Internet Technology, 5(2):299–327, 2005.

[2] G. Agha. Actors: a model of concurrent computation in distributed systems. MIT
Press, 1986.

[3] G. Agha, S. Frolund, R. Panwar, and D. Sturman. A linguistic framework for dynamic
composition of dependability protocols. In IFIP Transactions, pages 345–363, 1993.

[4] G. Agha, C. Gunter, M. Greenwald, S. Khanna, J. Meseguer, K. Sen, and P. Thati.
Formal modeling and analysis of DoS using probabilistic rewrite theories. In FCS,
2005.

[5] G. Agha, J. Meseguer, and K. Sen. Pmaude: Rewrite-based specification language
for probabilistic object systems. Electronic Notes in Theoretical Computer Science,
153:213–239, 2006.

[6] M. AlTurki. Rewriting-based formal modeling, analysis and implementation of real-
time distributed services. PhD thesis, University of Illinois at Urbana-Champaign,
2011. http://hdl.handle.net/2142/26231.

[7] M. AlTurki and J. Meseguer. Dist-Orc: A Rewriting-based Distributed Implemen-
tation of Orc with Formal Analysis. In Theoretical Computer Science, pages 26–45,
2010.

[8] M. AlTurki and J. Meseguer. PVeStA: A Parallel Statistical Model Checking and
Quantitative Analysis Tool. In Algebra and Coalgebra in Computer Science, volume
6859 of Lecture Notes in Computer Science, pages 386–392. 2011.

[9] M. AlTurki, J. Meseguer, and C. A. Gunter. Probabilistic Modeling and Analysis
of DoS Protection for the ASV Protocol. Electronic Notes in Theoretical Computer
Science, 234:3–18, 2009.

[10] Amazon.
See: http://aws.amazon.com/simpledb/ (Visited: September, 2011).

[11] Amazon. Amazon EC2 Pricing.
See: http://aws.amazon.com/ec2/pricing/ (Visited: September, 2011).

213

Bibliography

[12] Amazon. Amazon Elastic Block Store (EBS).
See: http://aws.amazon.com/ebs/ (Visited: November, 2011).

[13] Amazon. Amazon Elastic Block Store (EBS).
See: http://aws.amazon.com/ebs/ (Visited: September, 2011).

[14] Amazon. Amazon Elastic Compute Cloud (Amazon EC2).
See: http://aws.amazon.com/ec2/ (Visited: November, 2011).

[15] Amazon. Amazon Relational Database Service (Amazon RDS).
See: http://aws.amazon.com/rds/ (Visited: November, 2011).

[16] Amazon. Amazon Simple Storage Service (Amazon S3).
See: http://aws.amazon.com/s3/ (Visited: November, 2011).

[17] Amazon. Amazon SimpleDBAmazon SimpleDB.
See: http://aws.amazon.com/simpledb/ (Visited: November, 2011).

[18] Arash Ferdowsi. Yesterday’s Authentication Bug.
See: http://blog.dropbox.com/?p=821 (Visited: December, 2011).

[19] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee,
D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. Above the Clouds: A Berkeley
View of Cloud Computing. Technical report, University of California at Berkeley,
2009.

[20] A. Aziz, V. Singhal, F. Balarin, R. Brayton, and A. Sangiovanni-Vincentelli. It usually
works: The temporal logic of stochastic systems. In Computer Aided Verification,
volume 939 of Lecture Notes in Computer Science, pages 155–165. 1995.

[21] C. Baier, J.-P. Katoen, and H. Hermanns. Approximate symbolic model checking of
continuous-time markov chains. In International Conference on Concurrency Theory,
pages 146–161, 1999.

[22] M. H. t. Beek, S. Gnesi, F. Mazzanti, and C. Moiso. Formal modelling and verification
of an asynchronous extension of soap. In European Conference on Web Services, pages
287–296, 2006.

[23] K. Berkling. A Symmetric Complement to the Lambda Calculus, volume 76–77 of Bonn
Interner Bericht ISF. Gesellschaft für Mathematik und Datenverarbeitung mbH, 1976.

[24] K. Berkling and E. Fehr. A Consistent Extension of the Lambda Calculus as a Base for
Functional Programming Languages. Information and Control, 55(1):89–101, 1982.

[25] L. Bettini, R. De Nicola, and R. Pugliese. Klava: a java package for distributed and
mobile applications. Software - Practice and Experience, 32:1365–1394, 2002.

[26] L. Bettini, R. D. Nicola, R. Publiese, and G. Ferrari. Interactive mobile agents in x-
klaim. In IEEE Workshops on Enabling Technologies: Infrastructure for Collaborative
Enterprises, pages 110–115, 1998.

214

Bibliography

[27] Bianchi, S. and Felber, P. and Gradinariu, M. Content-Based Publish/Subscribe Using
Distributed R-Trees. In Euro-Par 2007 Parallel Processing, volume 4641 of Lecture
Notes in Computer Science, pages 537–548. Springer, 2007.

[28] P. Borovanský, C. Kirchner, H. Kirchner, and P.-E. Moreau. ELAN from a rewriting
logic point of view. Theoretical Computer Science, 285:155–185, 2002.

[29] G. E. P. Box and M. E. Muller. A Note on the Generation of Random Normal Deviates.
The Annals of Mathematical Statistics, 29(2):610–611, 1958.

[30] C. Braga and J. Meseguer. Modular Rewriting Semantics in Practice. Electronic Notes
in Theoretical Computer Science, 117:393–416, 2005.

[31] L. Cardelli and A. D. Gordon. Mobile ambients. In Foundations of Software Science
and Computation Structures, volume 1378 of Lecture Notes in Computer Science, pages
140–155, 1998.

[32] Carzaniga, A. and Rosenblum, D. S. and Wolf, A. L. Design and evaluation of a wide-
area event notification service. ACM Transactions on Computer Systems, 19:332–383,
2001.

[33] R. Chadha, C. A. Gunter, J. Meseguer, R. Shankesi, and M. Viswanathan. Modu-
lar Preservation of Safety Properties by Cookie-Based DoS-Protection Wrappers. In
Formal Methods for Open Object-Based Distributed Systems, volume 5051 of Lecture
Notes in Computer Science, pages 39–58, 2008.

[34] T. Chou. Cloud: Seven Clear Business Models. Active Book Press, 2010.

[35] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and C. Talcott.
All About Maude - A High-Performance Logical Framework: How to Specify, Program
and Verify Systems in Rewriting Logic, volume 4350 of Lecture Notes in Computer
Science. Springer, 2007.

[36] Cugola, G. and Jacobsen, H.-A. Using publish/subscribe middleware for mobile sys-
tems. SIGMOBILE Mobile Computing and Communications Review, 6:25–33, 2002.

[37] N. G. De Bruijn. Lambda calculus notation with nameless dummies, a tool for auto-
matic formula manipulation, with application to the Church-Rosser theorem. Indaga-
tiones Mathematicae, 75(5):381–392, 1972.

[38] R. De Nicola, G. L. Ferrari, and R. Pugliese. KLAIM: A Kernel Language for Agents
Interaction and Mobility. IEEE Transactions on Software Engineering, 24:315–330,
1998.

[39] R. Diaconescu and K. Futatsugi. CafeOBJ report: the language, proof techniques,
and methodologies for object-oriented algebraic specification. AMAST Series. World
Scientific, 1998.

[40] E. W. Dijkstra. Cooperating sequential processes. In F. Genuys, editor, Programming
Languages: NATO Advanced Study Institute, pages 43–112. Academic Press, 1968.

215

Bibliography

[41] R. Drucker and A. Frank. A C++/Linda Model for Distributed Objects. In Israeli
Conference on Computer-Based Systems and Software Engineering, pages 30–37, 1996.

[42] F. Durán, S. Eker, P. Lincoln, and J. Meseguer. Principles of Mobile Maude. In
International Symposium on Agent Systems and Applications, volume 1882 of Lecture
Notes in Computer Science, pages 73–85, 2000.

[43] J. Eckhardt. A formal analysis of security properties in cloud computing. Master’s
thesis, Ludwig Maximilian University of Munich, 2011.

[44] P. V. Eijk and M. Diaz, editors. Formal Description Technique Lotos: Results of the
Esprit Sedos Project. Elsevier, 1989.

[45] Eugster, P.T. and Felber, P.A. and Guerraoui, R. and Kermarrec, A.-M. The many
faces of publish/subscribe. ACM Computing Surveys, 35:114–131, 2003.

[46] H. Fayol. Administration industrielle et générale: prévoyance, organisation, comman-
dement, coordination, contrôle. Dunod, 1947.

[47] I. Foster. What is the Grid? - a three point checklist. GRIDtoday, 1(6), July 2002.

[48] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of
reusable object-oriented software. Addison-Wesley Professional, 1995.

[49] S. L. Garfinkel. Architects of the Information Society: Thirty-Five Years of the Labo-
ratory for Computer Science at MIT. MIT Press, 1999.

[50] D. Gelernter. Generative communication in Linda. ACM Transactions on Program-
ming Languages and Systems, 7:80–112, 1985.

[51] D. Gelernter and N. Carriero. Coordination languages and their significance. Com-
munications of the ACM, 35:97–107, 1992.

[52] J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud. Introducing
OBJ. In J. Goguen and G. Malcolm, editors, Software Engineering with OBJ: Algebraic
Specification in Action, pages 3–167. Kluwer Academic Publishers, 2000.

[53] Google. Google App Engine.
See: http://code.google.com/appengine/ (Visited: November, 2011).

[54] Google. Google Cloud SQL.
See: http://code.google.com/intl/en/apis/sql/ (Visited: November, 2011).

[55] Google. Google finance.
See: http://finance.google.com/ (Visited: September, 2011).

[56] Google. Google Products.
See: http://www.google.com/intl/en/about/products/index.html
(Visited: November, 2011).

216

Bibliography

[57] C. Gunter, S. Khanna, K. Tan, and S. Venkatesh. DoS Protection for Reliably
Authenticated Broadcast. In Network and Distributed System Security Symposium,
2004.

[58] Haldane, A.G. Patience and Finance.
See: http://www.bankofengland.co.uk/publications/speeches/2010/
speech445.pdf

(Visited: September, 2011).

[59] H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal
Aspects of Computing, 6:512–535, 1994.

[60] C. Hewitt and H. G. Baker. Laws for communicating parallel processes. In IFIP
Congress, pages 987–992, 1977.

[61] C. Hewitt, P. Bishop, and R. Steiger. A universal modular actor formalism for
artificial intelligence. In International Joint Conference on Artificial Intelligence,
pages 235–245, 1973.

[62] J. Hillston. A compositional approach to performance modelling. Cambridge
University Press, 1996.

[63] C. A. R. Hoare. Communicating sequential processes. Communications of the ACM,
21:666–677, 1978.

[64] R. V. Hogg, A. Craig, and J. W. Mckean. Introduction to Mathematical Statistics.
Prentice Hall, 2004.

[65] Z. Huang, W. Wu, K. Nahrstedt, R. Rivas, and A. Arefin. SyncCast: synchronized
dissemination in multi-site interactive 3D tele-immersion. In Annual ACM
conference on Multimedia systems, pages 69–80, 2011.

[66] S. Khanna, S. Venkatesh, O. Fatemieh, F. Khan, and C. Gunter. Adaptive Selective
Verification. In IEEE Conference on Computer Communications, pages 529–537,
2008.

[67] N. Kumar, K. Sen, J. Meseguer, and G. Agha. A Rewriting Based Model for
Probabilistic Distributed Object Systems. In Lecture Notes in Computer Science,
volume 2884, pages 32–46, 2003.

[68] N. Kumar, K. Sen, J. Meseguer, and G. Agha. Probabilistic rewrite theories:
Unifying models, logics and tools. Technical report, University of Illinois at
Urbana-Champaign, 2003.

[69] S. Lafrance and J. Mullins. An Information Flow Method to Detect Denial of Service
Vulnerabilities. Journal of Universal Computer Science, 9(11):1350–1369, 2003.

[70] A. Mahimkar and V. Shmatikov. Game-based Analysis of Denial-of-Service
Prevention Protocols. In IEEE Computer Security Foundations Workshop, pages
287–301, 2005.

217

Bibliography

[71] D. Mankins, R. Krishnan, C. Boyd, J. Zao, and M. Frentz. Mitigating Distributed
Denial of Service Attacks with Dynamic Resource Pricing. In Annual Computer
Security Applications Conference, page 411, 2001.

[72] MasterCard. MasterCard Statement.
See: http://www.businesswire.com/news/home/20101208005866/en/MasterCard-
Statement

(Visited: September, 2011).

[73] MasterCard. MasterCard Statement.
See: http://www.businesswire.com/news/home/20101208006660/en/MasterCard-
Statement

(Visited: September, 2011).

[74] C. Meadows. A Formal Framework and Evaluation Method for Network Denial of
Service. In IEEE Computer Security Foundations Workshop, 1999.

[75] J. Meseguer. Conditional Rewriting Logic as a Unified Model of Concurrency.
Theoretical Computer Science, 96(1):73–155, 1992.

[76] J. Meseguer. Membership algebra as a logical framework for equational specification.
In Recent Trends in Algebraic Development Techniques, volume 1376 of Lecture
Notes in Computer Science, pages 18–61. Springer, 1998.

[77] J. Meseguer. Twenty years of rewriting logic. Journal of Logic and Algebraic
Programming, 2011.

[78] J. Meseguer and C. L. Talcott. Semantic models for distributed object reflection. In
European Conference on Object-Oriented Programming, pages 1–36, 2002.

[79] Microsoft. SQL Azure Database.
See: http://www.microsoft.com/windowsazure/features/database/
(Visited: November, 2011).

[80] Microsoft. Steve Ballmer: Cloud Computing.
See: http://www.microsoft.com/presspass/exec/steve/2010/03-04cloud.mspx
(Visited: November, 2011).

[81] Microsoft. The STRIDE Threat Model.
See: http://msdn.microsoft.com/en-us/library/ee823878(v=cs.20).aspx
(Visited: September, 2011).

[82] Microsoft. Windows Azure Platform.
See: http://www.microsoft.com/windowsazure/ (Visited: November, 2011).

[83] R. Milner. A Calculus of Communicating Systems. Springer, 1982.

[84] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[85] R. Milner. Communicating and Mobile Systems: the Pi-Calculus. Cambridge
University Press, 1999.

218

Bibliography

[86] J. Misra. Computation orchestration: A basis for wide-area computing. In Journal
of Software and Systems Modeling, pages 10–1007, 2006.

[87] H. R. Motahari-Nezhad, B. Stephenson, and S. Singhal. Outsourcing Business to
Cloud Computing Services: Opportunities and Challenges. Development, 10(4):1–17,
2009.

[88] R. D. Nicola and M. Loreti. A modal logic for klaim. In International Conference on
Algebraic Methodology and Software Technology, AMAST, pages 339–354, 2000.

[89] P. C. Ölveczky and J. Meseguer. Semantics and pragmatics of Real-Time Maude.
Higher-Order and Symbolic Computation, 20(1–2):161–196, 2007.

[90] OMG. Notification Service.
See: http://www.omg.org/spec/NOT/ (Visited: September, 2011).

[91] Oracle. Java Message Service (JMS).
See: http://www.oracle.com/technetwork/java/jms/index.html
(Visited: September, 2011).

[92] PlanetLab. PlanetLab.
See: http://www.planet-lab.org/node/1 (Visited: September, 2011).

[93] T. Pongthawornkamol, K. Nahrstedt, and G. Wang. Probabilistic QoS modeling for
reliability/timeliness prediction in distributed content-based publish/subscribe
systems over best-effort networks. In International Conference on Autonomic
Computing, pages 185–194, 2010.

[94] Robert Mackey. ‘Operation Payback’ Attacks Target MasterCard and
PayPal Sites to Avenge WikiLeaks.
See: http://thelede.blogs.nytimes.com/2010/12/08/operation-payback-
targets-mastercard-and-paypal-sites-to-avenge-wikileaks/

(Visited: September, 2011).

[95] salesforce.com. force.com.
See: http://www.force.com/ (Visited: November, 2011).

[96] K. Sen, M. Viswanathan, and G. Agha. Statistical model checking of black-box
probabilistic systems. In Computer Aided Verification, pages 202–215, 2004.

[97] K. Sen, M. Viswanathan, and G. Agha. On statistical model checking of stochastic
systems. In Computer Aided Verification, volume 3576 of Lecture Notes in Computer
Science, pages 251–255. 2005.

[98] K. Sen, M. Viswanathan, and G. Agha. VESTA: A Statistical Model-checker and
Analyzer for Probabilistic Systems. In International Conference on the Quantitative
Evaluation of Systems, pages 251–252, 2005.

[99] M. Stehr. CINNI - A Generic Calculus of Explicit Substitutions and its Application
to λ- ς- and π-Calculi. Electronic Notes in Theoretical Computer Science, 36:70–92,
2000.

219

Bibliography

[100] E. Steven, J. Meseguer, and A. Sridharanarayanan. The Maude LTL model checker.
In Workshop on Rewriting Logic and its Applications, volume 71 of Electronic Notes
in Theoretical Computer Science, 2002.

[101] S. T.-F., G. Rosu, and J. Meseguer. A rewriting logic approach to operational
semantics. Information and Computation, 207:305–340, 2009.

[102] C. L. Talcott. Coordination Models Based on a Formal Model of Distributed Object
Reflection. Theoretical Computer Science, 150:143–157, 2006.

[103] Terpstra, W.W. and Behnel, S. and Fiege, L. and Zeidler, A. and Buchmann, A.P. A
peer-to-peer approach to content-based publish/subscribe. In International workshop
on Distributed Event-based Systems, pages 1–8, 2003.

[104] P. Thati. A theory of testing for asynchronous concurrent systems. PhD thesis,
University of Illinois at Urbana-Champaign, 2003.

[105] The Systems Research at Harvard (SYRAH) Group. Network Coordinate Research
at Harvard.
See: http://www.eecs.harvard.edu/~syrah/nc/ (Visited: September, 2011).

[106] The Wall Street Journal. Larry ellison’s brilliant anti cloud computing rant.
See: http://blogs.wsj.com/biztech/2008/09/25/larry-ellisons-brilliant-
anti-cloud-computing-rant/ (Visited: April, 2011).

[107] Triantafillou, P. and Aekaterinidis, I. Content-based Publish/Subscribe over
Structured P2P Networks. In International workshop on Distributed Event-based
Systems, pages 24–25, 2004.

[108] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner. A break in the clouds:
towards a cloud definition. Computer Communication Review, 39:50–55, 2008.

[109] N. Venkatasubramanian, C. L. Talcott, and G. Agha. A formal model for reasoning
about adaptive qos-enabled middleware. ACM Transactions on Software Engineering
and Methodology, 13(1):86–147, 2004.

[110] A. Verdejo and N. Martí-Oliet. Executable structural operational semantics in
Maude. Journal of Logic and Algebraic Programming, 67(1–2):226–293, 2006.

[111] W3C. Request-Response Message Exchange Pattern.
See: http://www.w3.org/TR/2003/PR-soap12-part2-20030507/#
singlereqrespmep

(Visited: September, 2011).

[112] W3C. Web Services Eventing (WS-Eventing).
See: http://www.w3.org/TR/2011/CR-ws-eventing-20110428/
(Visited: September, 2011).

[113] M. Walfish, M. Vutukuru, H. Balakrishnan, D. R. Karger, and S. Shenker. DDoS
defense by offense. In ACM SIGCOMM, pages 303–314, 2006.

220

Bibliography

[114] C. Wang, G. Wang, H. Wang, A. Chen, and R. Santiago. Quality of Service (QoS)
Contract Specification, Establishment, and Monitoring for Service Level
Management. In IEEE International Enterprise Distributed Object Computing
Conference Workshops, volume 6, pages 49–49, 2006.

[115] X. Wang and M. K. Reiter. Defending Against Denial-of-Service Attacks with Puzzle
Auctions. In IEEE Symposium on Security and Privacy, page 78, 2003.

[116] Wang, G. and Chen, A. and Wang, C. and Fung, C. and Uczekaj. S. Integrated
Quality of Service (QoS) Management in Service-Oriented Enterprise Architectures.
IEEE International Enterprise Distributed Object Computing Conference, 0:21–32,
2004.

[117] Washington State University. GridStat.
See: http://www.gridstat.net/ (Visited: September, 2011).

[118] G. Wells. Coordination Languages: Back to the Future with Linda. In International
Workshop on Coordination and Adaptation Techniques for Software, pages 87–98,
2005.

[119] G. C. Wells, A. G. Chalmers, and P. G. Clayton. Linda implementations in Java for
concurrent systems. Concurrency and Computation: Practice and Experience,
16:1005–1022, 2003.

[120] M. Wirsing, A. Clark, S. Gilmore, M. Hölzl, N. Koch, and A. Schroeder.
Semantic-based development of service-oriented systems. In International Conference
on Formal Methods for Networked and Distributed Systems, volume 4229 of Lecture
Notes in Computer Science, pages 24–45, 2006.

[121] Yahoo! Yahoo! Finance.
See: http://finance.yahoo.com/ (Visited: September, 2011).

[122] C.-F. Yu and V. Gligor. A Specification and Verification Method for Preventing
Denial of Service. IEEE Transactions on Software Engineering, 16(6):581–592, 1990.

221

	Acknowledgements
	Abstract
	Contents
	Introduction
	Motivation
	Challenges of Cloud Computing Management
	Main contributions
	Outline of this thesis

	Cloud Computing in a Nutshell
	What is Cloud Computing?
	Technical definition
	Comparison to other utility computing paradigms

	Preliminaries: Rewriting Logic and the Maude System
	A brief introduction to Rewriting Logic
	The Maude system
	Specification of real-time and probabilistic systems
	Specification of object-oriented systems
	Parameterized modules
	Formal meta-object patterns

	Formal Languages for the Design and Analysis of Cloud-based Architectures
	Introduction to Coordination Languages
	Linda
	Advantages of Coordination Languages

	KLAIM
	Overview of KLAIM

	M-KLAIM — a Maude-based specification of KLAIM
	Overview
	Description of modules

	Application of the CINNI calculus
	Implementation of CINNIKLAIM

	OO-KLAIM — an extension of M-KLAIM for object-oriented specifications
	Object-based programming in Maude
	OO-KLAIM syntax
	OO-KLAIM semantics

	D-KLAIM — an extension of OO-KLAIM for distributed specifications
	Rewriting with external objects in Maude
	D-KLAIM specification overview
	D-KLAIM modules
	The socket interface
	Example of a Cloud-based architecture specification based on D-KLAIM

	Maude-based formal analysis of *-KLAIM
	Maude LTL model checking
	A *-KLAIM-based token-based mutual exclusion algorithm
	Model checking using the Maude search command
	A D-KLAIM-based load balancer

	Related Work
	Conclusion

	A Modularized Actor Model for Statistical Model Checking
	Introduction to the Actor Model of Computation
	A Maude-based Specification of the Actor Model

	Introduction to Statistical Model Checking
	Probabilistic Rewrite Theories
	Maude specification of Actor PMaude
	Statistical Analysis using the PVeStA model checker

	Introduction to the Reflective Russian Dolls Model
	The Modularized Actor Model
	The Hierarchical Addressing Scheme
	The Actor Model and the Name Generator

	Multi-level scheduling for the Modularized Actor Model
	The Absence of unquantified non-determinism

	Using PVeStA to Statistically Analyze Specifications based on the Modularized Actor Model
	The module APMAUDE
	Running PVeStA

	Guaranteeing Stable Availability under Distributed Denial of Service Attacks
	Introduction to Denial of Service Attacks
	The ASV Protocol
	Maude-based Analysis of the ASV Protocol
	Description of the ASV specification in Maude
	Statistical Model Checking Results

	ASV+SR — a 2-Dimensional Protection Mechanism against DDoS Attacks
	The Server Replicator meta-object and the ASV+SR protocol
	Description of the ASV+SR specification in Maude
	Statistical Model Checking Results

	Related Work
	Conclusion

	QoS Analysis of Cloud-based Publish/Subscribe Systems
	Introduction to Publish/Subscribe Systems
	Three-dimensional decoupling
	Types of event filtering
	Broker-based publish/subscribe middleware solutions
	QoS requirements and resource planning

	A Stock Exchange Information System
	Events
	Network
	Behavior of subscribers, publishers, and brokers

	Specification of the Stock Exchange Information System in Maude
	Overview of the Maude specification
	Description of the modules

	Statistical Analysis of the Stock Exchange Information System
	Adding Cloud-based Broker Replication
	Broker Data — a data storage and access interface for Cloud-based systems
	Broker replication in the Cloud

	Specification of the Cloud-based Stock Exchange Information System in Maude
	Overview of the Maude specification
	Description of the modules of the Maude specification

	Statistical Analysis of the Cloud-based Stock Exchange Information System
	Conclusion & Future Work

	Outlook and Conclusion
	Appendix
	Formal Languages for the Design and Analysis of Cloud-based Architectures
	Automatic Generation of CINNI Instances for the Maude System
	Introduction
	CINNI
	Running Example: CINNIPI
	The Transformation
	Creation of CINNI operators
	Creation of CINNI equations

	The createCINNI Tool

	A Modularized Actor Model for Statistical Model Checking
	The SAMPLER module

	Guaranteeing Stable Availability under Distributed Denial of Service Attacks
	Maude Specification of a Generic Actor Generator

	QoS Analysis of a Cloud-based Publish/Subscribe Middleware
	Predicate filter generator for the stock exchange information system model
	The module MODEL-PARAMS

	Initial configuration of the stock exchange information system model
	Initial configuration of the Cloud-based stock exchange information system model

	Bibliography

